
PL/SQL & SQL
Coding Guidelines

Tips for Development & Operation

Document Version 4.1
© 2022 Trivadis AG

2

6
6

7
7
7

7

8
8

8
8

10
11
11
11
11
12

13
13

13

14
14
15
15
15
15
16
16
16
16
16
17
17
17
17
18
18
18
19

20
20
20
20

22
22
22
22

23
23
23
24
26
27

Table of Contents

Table of Contents

About
Foreword

License
Trademarks
Disclaimer

Revision History

Introduction
Scope

Document Conventions
SQALE characteristics and subcharacteristics
Severity of the rule
Keywords used
Validator support
Why are standards important
We have other standards
We do not agree with all your standards

Naming Conventions
General Guidelines

Naming Conventions for PL/SQL

Database Object Naming Conventions
Collection Type
Column
Check Constraint
DML / Instead of Trigger
Foreign Key Constraint
Function
Index
Object Type
Package
Primary Key Constraint
Procedure
Sequence
Synonym
System Trigger
Table
Temporary Table (Global Temporary Table)
Unique Key Constraint
View

Coding Style
Formatting

Rules
Example

Code Commenting
Conventions
Commenting Tags
Example

Language Usage
General

G-1010: Try to label your sub blocks.
G-1020: Always have a matching loop or block label.
G-1030: Avoid defining variables that are not used.
G-1040: Avoid dead code.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 2 of 193

29
31
32
33

34
34
34
35
36
37
38
39
40
41
42
43
44
45
46
46
47
48
49
49
50
51
52
53
53
54
54
55
55

56
56
56
57
58
60
61
62
63
64
66
67
68
69
70
71
71
72
73
73
75

76
76
76
77
79
80
82
82
83
85
86
87
88
89
90
90

G-1050: Avoid using literals in your code.
G-1060: Avoid storing ROWIDs or UROWIDs in database tables.
G-1070: Avoid nesting comment blocks.
G-1080: Avoid using the same expression on both sides of a relational comparison operator or a logical operator.

Variables & Types
General

G-2110: Try to use anchored declarations for variables, constants and types.
G-2120: Try to have a single location to define your types.
G-2130: Try to use subtypes for constructs used often in your code.
G-2135: Avoid assigning values to local variables that are not used by a subsequent statement.
G-2140: Never initialize variables with NULL.
G-2145: Never self-assign a variable.
G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.
G-2160: Avoid initializing variables using functions in the declaration section.
G-2170: Never overload variables.
G-2180: Never use quoted identifiers.
G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
G-2190: Avoid using ROWID or UROWID.

Numeric Data Types
G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.
G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

Character Data Types
G-2310: Avoid using CHAR data type.
G-2320: Never use VARCHAR data type.
G-2330: Never use zero-length strings to substitute NULL.
G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

Boolean Data Types
G-2410: Try to use boolean data type for values with dual meaning.

Large Objects
G-2510: Avoid using the LONG and LONG RAW data types.

Cursor Variables
G-2610: Never use self-defined weak ref cursor types.

DML & SQL
General

G-3110: Always specify the target columns when coding an insert statement.
G-3115: Avoid self-assigning a column.
G-3120: Always use table aliases when your SQL statement involves more than one source.
G-3130: Try to use ANSI SQL-92 join syntax.
G-3140: Try to use anchored records as targets for your cursors.
G-3145: Avoid using SELECT * directly from a table or view.
G-3150: Try to use identity columns for surrogate keys.
G-3160: Avoid visible virtual columns.
G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
G-3180: Always specify column names instead of positional references in ORDER BY clauses.
G-3185: Never use ROWNUM at the same query level as ORDER BY.
G-3190: Avoid using NATURAL JOIN.
G-3195: Always use wildcards in a LIKE clause.

Bulk Operations
G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.
G-3220: Always process saved exceptions from a FORALL statement.

Transaction Control
G-3310: Never commit within a cursor loop.
G-3320: Try to move transactions within a non-cursor loop into procedures.

Control Structures
CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
G-4130: Always close locally opened cursors.
G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

CASE / IF / DECODE / NVL / NVL2 / COALESCE
G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
G-4220: Try to use CASE rather than DECODE.
G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.
G-4250: Avoid using identical conditions in different branches of the same IF or CASE statement.
G-4260: Avoid inverting boolean conditions with NOT.
G-4270: Avoid comparing boolean values to boolean literals.

Flow Control
G-4310: Never use GOTO statements in your code.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 3 of 193

92
94
95
96
97
98
99

100
102
103
105
106
107

108
108
109
110
112
113
114
115
116

117
117
118

119
119
119
120
121
122
124
125
126
127
129
129
130
132
134
135
135
136
137
138
138
139
140
141
142
143
144
144
145
146
146
148
149
150
152
152
153
153

154
154
154
156
157
157

G-4320: Always label your loops.
G-4325: Never reuse labels in inner scopes.
G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
G-4340: Always use a NUMERIC FOR loop to process a dense array.
G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
G-4360: Always use a WHILE loop to process a loose array.
G-4365: Never use unconditional CONTINUE or EXIT in a loop.
G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
G-4380: Try to label your EXIT WHEN statements.
G-4385: Never use a cursor for loop to check whether a cursor returns data.
G-4390: Avoid use of unreferenced FOR loop indexes.
G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

Exception Handling
G-5010: Try to use a error/logging framework for your application.
G-5020: Never handle unnamed exceptions using the error number.
G-5030: Never assign predefined exception names to user defined exceptions.
G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.
G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
G-5060: Avoid unhandled exceptions.
G-5070: Avoid using Oracle predefined exceptions.
G-5080: Always use FORMAT_ERROR_BACKTRACE when using FORMAT_ERROR_STACK or SQLERRM.

Dynamic SQL
G-6010: Always use a character variable to execute dynamic SQL.
G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.

Stored Objects
General

G-7110: Try to use named notation when calling program units.
G-7120: Always add the name of the program unit to its end keyword.
G-7125: Always use CREATE OR REPLACE instead of CREATE alone.
G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
G-7140: Always ensure that locally defined procedures or functions are referenced.
G-7150: Try to remove unused parameters.
G-7160: Always explicitly state parameter mode.
G-7170: Avoid using an IN OUT parameter as IN or OUT only.

Packages
G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
G-7220: Always use forward declaration for private functions and procedures.
G-7230: Avoid declaring global variables public.
G-7250: Never use RETURN in package initialization block.

Procedures
G-7310: Avoid standalone procedures – put your procedures in packages.
G-7320: Avoid using RETURN statements in a PROCEDURE.
G-7330: Always assign values to OUT parameters.

Functions
G-7410: Avoid standalone functions – put your functions in packages.
G-7420: Always make the RETURN statement the last statement of your function.
G-7430: Try to use no more than one RETURN statement within a function.
G-7440: Never use OUT parameters to return values from a function.
G-7450: Never return a NULL value from a BOOLEAN function.
G-7460: Try to define your packaged/standalone function deterministic if appropriate.

Oracle Supplied Packages
G-7510: Always prefix Oracle supplied packages with owner schema name.

Object Types
Triggers

G-7710: Avoid cascading triggers.
G-7720: Never use multiple UPDATE OF in trigger event clause.
G-7730: Avoid multiple DML events per trigger.
G-7740: Never handle multiple DML events per trigger if primary key is assigned in trigger.

Sequences
G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

SQL Macros
G-7910: Never use DML within a SQL macro.

Patterns
Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
G-8120: Never check existence of a row to decide whether to create it or not.

Access objects of foreign application schemas
G-8210: Always use synonyms when accessing objects of another application schema.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 4 of 193

158
158
159
159
161
161

162
162
163
164
164
165

166
166

166

166
166
167

169

170
170

170
170

174
174
174
174
175
175

179
179
179

182
182

183
183

184
184

184

Validating input parameter size
G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.

Ensure single execution at a time of a program unit
G-8410: Always use application locks to ensure a program unit is only running once at a given time.

Use dbms_application_info package to follow progress of a process
G-8510: Always use dbms_application_info to track program process transiently.

Function Usage
G-9010: Always use a format model in string to date/time conversion functions.
G-9020: Try to use a format model and NLS_NUMERIC_CHARACTERS in string to number conversion functions.
G-9030: Try to define a default value on conversion errors.

Restriction
G-9040: Try using FX in string to date/time conversion format model to avoid fuzzy conversion.

Complexity Analysis
Halstead Metrics

Calculation

McCabe's Cyclomatic Complexity
Description
Calculation

Code Reviews

Tool Support
db* CODECOP for SQL Developer

Introduction
Examples

db* CODECOP for SonarQube
Introduction
Examples

Run Code Analysis via SonarScanner
Run Code Analyis with CI Environments
View Code Analysis Result in SonarQube

db* CODECOP Command Line
Introduction
Examples

db* CODECOP Validators
Provided Validators

plscope-utils
Introduction

Appendix
A - PL/SQL & SQL Coding Guidelines as PDF

B - Mapping new guidelines to prior versions

PL/SQL & SQL Coding Guidelines Version 4.1 Page 5 of 193

About

Foreword

In the I.T. world of today, robust and secure applications are becoming more and more important.
Many business processes no longer work without I.T. and the dependence of businesses on their
I.T. has grown tremendously, meaning we need robust and maintainable applications. An
important requirement is to have standards and guidelines, which make it possible to maintain
source code created by a number of people quickly and easily. This forms the basis of well
functioning off- or on-shoring strategy, as it allows quality assurance to be carried out efficiently at
the source.

Good standards and guidelines are based on the wealth of experience and knowledge gained from past (and future?)
problems, such as those, which can arise in a cloud environment, for example.

Urban Lankes
Chairman
biGENIUS AG

The Oracle Database Developer community is made stronger by resources freely shared by
experts around the world, such as the Trivadis Coding Guidelines. If you have not yet adopted
standards for writing SQL and PL/SQL in your applications, this is a great place to start.

Steven Feuerstein
Senior Advisor
Insum Solutions

Coding Guidelines are a crucial part of software development. It is a matter of fact, that code is
more often read than written – therefore we should take efforts to ease the work of the reader,
which is not necessarily the author.

I am convinced that this standard may be a good starting point for your own guidelines.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 6 of 193

Roger Troller
Senior Consultant
finnova AG Bankware

License

The Trivadis PL/SQL & SQL Coding Guidelines are licensed under the Apache License, Version 2.0. You may obtain a
copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Trademarks

All terms that are known trademarks or service marks have been capitalized. All trademarks are the property of their
respective owners.

Disclaimer

The authors and publisher shall have neither liability nor responsibility to any person or entity with respect to the loss or
damages arising from the information contained in this work. This work may include inaccuracies or typographical
errors and solely represent the opinions of the authors. Changes are periodically made to this document without notice.
The authors reserve the right to revise this document at any time without notice.

Revision History

The first version of these guidelines was compiled by Roger Troller on March 17, 2009. Jörn Kulessa, Daniela Reiner,
Richard Bushnell, Andreas Flubacher and Thomas Mauch helped Roger complete version 1.2 until August 21, 2009.
This was the first GA version. The handy printed version in A5 format was distributed free of charge at the DOAG
Annual Conference and on other occasions. Since then Roger updated the guidelines regularily. Philipp Salvisberg was
involved in the review process for version 3.0 which was a major update. Philipp took the lead, after Roger left Trivadis
in 2016. In 2020 Kim Berg Hansen started handling guidelines maintenance, letting Philipp concentrate on the related
Trivadis db* CODECOP tool.

Since July, 7 2018 these guidelines are hosted on GitHub. Ready to be enhanced by the community and forked to fit
specific needs.

On https://github.com/Trivadis/plsql-and-sql-coding-guidelines/releases you find the release information for every
version since 1.2.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 7 of 193

http://www.apache.org/licenses/LICENSE-2.0
https://cdn.trivadis.com/downloads/dbCODECOP-fs-en.pdf
https://github.com/Trivadis/plsql-and-sql-coding-guidelines/releases

Introduction

This document describes rules and recommendations for developing applications using the PL/SQL & SQL Language.

Scope

This document applies to the PL/SQL and SQL language as used within Oracle databases and tools, which access
Oracle databases version 11g Release 2 or later.

Document Conventions

SQALE (Software Quality Assessment based on Lifecycle Expectations) is a method to support the evaluation of a
software application source code. It is a generic method, independent of the language and source code analysis tools.

SQALE characteristics and subcharacteristics

Characteristic Description and Subcharacteristics

Changeability The capability of the software product to enable a specified modification to be implemented.
Architecture related changeability

Logic related changeability

Data related changeability

Efficiency The capability of the software product to provide appropriate performance, relative to the amount of resources
used, under stated conditions.

Memory use

Processor use

Network use

Maintainability The capability of the software product to be modified. Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and in requirements and functional specifications.

Understandability

Readability

Portability The capability of the software product to be transferred from one environment to another.
Compiler related portability

Hardware related portability

Language related portability

OS related portability

Software related portability

Time zone related portability.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 8 of 193

Reliability The capability of the software product to maintain a specified level of performance when used under specified
conditions.

Architecture related reliability

Data related reliability

Exception handling

Fault tolerance

Instruction related reliability

Logic related reliability

Resource related reliability

Synchronization related reliability

Unit tests coverage.

Reusability The capability of the software product to be reused within the development process.
Modularity

Transportability.

Security The capability of the software product to protect information and data so that unauthorized persons or systems
cannot read or modify them and authorized persons or systems are not denied access to them.

API abuse

Errors (e.g. leaving a system in a vulnerable state)

Input validatation and representation

Security features.

Testability The capability of the software product to enable modified software to be validated.
Integration level testability

Unit level testability.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 9 of 193

Severity of the rule

Will or may result in a bug.

Will have a high/direct impact on the maintenance cost.

Will have a medium/potential impact on the maintenance cost.

Will have a low impact on the maintenance cost.

Very low impact; it is just a remediation cost report.

Blocker

Critical

Major

Minor

Info

PL/SQL & SQL Coding Guidelines Version 4.1 Page 10 of 193

Keywords used

Keyword Meaning

Always Emphasizes this rule must be enforced.

Never Emphasizes this action must not happen.

Avoid Emphasizes that the action should be prevented, but some exceptions may exist.

Try Emphasizes that the rule should be attempted whenever possible and appropriate.

Example Precedes text used to illustrate a rule or a recommendation.

Reason Explains the thoughts and purpose behind a rule or a recommendation.

Restriction Describes the circumstances to be fulfilled to make use of a rule.

Validator support

The tool PL/SQL Cop (see the "Tool Support" chapter) cannot support all the guidelines in this document. Those
guidelines that are not supported by PL/SQL Cop validators are marked like this:

Reason why the specific guideline is not supported by the validators.

The PL/SQL Cop repository documents the details of validator limitations.

Why are standards important

For a machine executing a program, code formatting is of no importance. However, for the human eye, well-formatted
code is much easier to read. Modern tools can help to implement format and coding rules.

Implementing formatting and coding standards has the following advantages for PL/SQL development:

Well-formatted code is easier to read, analyze and maintain (not only for the author but also for other developers).

The developers do not have to define their own guidelines - it is already defined.

The code has a structure that makes it easier to avoid making errors.

The code is more efficient concerning performance and organization of the whole application.

The code is more modular and thus easier to use for other applications.

We have other standards

This document only defines possible standards. These standards are not written in stone, but are meant as guidelines.
If standards already exist, and they are different from those in this document, it makes no sense to change them.

Unsupported in PL/SQL Cop Validators

PL/SQL & SQL Coding Guidelines Version 4.1 Page 11 of 193

https://github.com/Trivadis/plsql-cop-cli/blob/main/validator-limitations.md#guidelines

We do not agree with all your standards

There are basically two types of standards.

1. Non-controversial

These standards make sense. There is no reason not to follow them. An example of this category is G-2150: Avoid
comparisons with NULL value, consider using IS [NOT] NULL.

2. Controversial

Almost every rule/guideline falls into this category. An example of this category is 3 space indention. - Why not 2 or
4 or even 8? Why not use tabs? You can argue in favor of all these options. In most cases it does not really matter
which option you choose. Being consistent is more important. In this case it will make the code easier to read.

For very controversial rules, we have started to include the reasoning either as a footnote or directly in the text.

Usually it is not helpful to open an issue on GitHub to request to change a highly controversial rule such as the one
mentioned. For example, use 2 spaces instead of 3 spaces for an indentation. This leads to a discussion where the
people in favor of 4 spaces start to argument as well. There is no right or wrong here. You just have to agree on a
standard.

More effective is to fork this repository and amend the standards to fit your needs/expectations.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 12 of 193

https://github.com/Trivadis/plsql-and-sql-coding-guidelines

Naming Conventions

General Guidelines

1. Never use names with a leading numeric character.

2. Always choose meaningful and specific names.

3. Avoid using abbreviations unless the full name is excessively long.

4. Avoid long abbreviations. Abbreviations should be shorter than 5 characters.

5. Any abbreviations must be widely known and accepted.

6. Create a glossary with all accepted abbreviations.

7. Never use Oracle keywords as names. A list of Oracles keywords may be found in the dictionary view
v$reserved_words .

8. Avoid adding redundant or meaningless prefixes and suffixes to identifiers.
Example: create table emp_table .

9. Always use one spoken language (e.g. English, German, French) for all objects in your application.

10. Always use the same names for elements with the same meaning.

Naming Conventions for PL/SQL

In general, Oracle is not case sensitive with names. A variable named personname is equal to one named PersonName,
as well as to one named PERSONNAME. Some products (e.g. TMDA by Trivadis, APEX, OWB) put each name within
double quotes (") so Oracle will treat these names to be case sensitive. Using case sensitive variable names force
developers to use double quotes for each reference to the variable. Our recommendation is to write all names in
lowercase and to avoid double quoted identifiers.

A widely used convention is to follow a {prefix}variablecontent{suffix} pattern.

The following table shows a possible set of naming conventions.

Identifier Prefix Suffix Example

Global Variable g_ g_version

Local Variable l_ l_version

Cursor c_ c_employees

Record r_ r_employee

Array / Table t_ t_employees

Object o_ o_employee

Cursor Parameter p_ p_empno

PL/SQL & SQL Coding Guidelines Version 4.1 Page 13 of 193

In Parameter in_ in_empno

Out Parameter out_ out_ename

In/Out Parameter io_ io_employee

Record Type Definitions r_ _type r_employee_type

Array/Table Type Definitions t_ _type t_employees_type

Exception e_ e_employee_exists

Constants co_ co_empno

Subtypes _type big_string_type

Database Object Naming Conventions

Never enclose object names (table names, column names, etc.) in double quotes to enforce mixed case or lower case
object names in the data dictionary.

Collection Type

A collection type should include the name of the collected objects in their name. Furthermore, they should have the
suffix _ct to identify it as a collection.

Optionally prefixed by a project abbreviation.

Examples:

employees_ct

orders_ct

PL/SQL & SQL Coding Guidelines Version 4.1 Page 14 of 193

Column

Singular name of what is stored in the column (unless the column data type is a collection, in this case you use plural1

names)

Add a comment to the database dictionary for every column.

Check Constraint

Table name or table abbreviation followed by the column and/or role of the check constraint, a _ck and an optional
number suffix.

Examples:

employees_salary_min_ck

orders_mode_ck

DML / Instead of Trigger

Choose a naming convention that includes:

either

the name of the object the trigger is added to,

any of the triggering events:

_br_iud for Before Row on Insert, Update and Delete

_io_id for Instead of Insert and Delete

or

the name of the object the trigger is added to,

the activity done by the trigger,

the suffix _trg

Examples:

employees_br_iud

orders_audit_trg

orders_journal_trg

Foreign Key Constraint

Table abbreviation followed by referenced table abbreviation followed by a _fk and an optional number suffix.

Examples:

empl_dept_fk

sct_icmd_ic_fk1

PL/SQL & SQL Coding Guidelines Version 4.1 Page 15 of 193

Function

Name is built from a verb followed by a noun in general. Nevertheless, it is not sensible to call a function get_... as a
function always gets something.

The name of the function should answer the question “What is the outcome of the function?”

Optionally prefixed by a project abbreviation.

Example: employee_by_id

If more than one function provides the same outcome, you have to be more specific with the name.

Index

Indexes serving a constraint (primary, unique or foreign key) are named accordingly.

Other indexes should have the name of the table and columns (or their purpose) in their name and should also have
_idx as a suffix.

Object Type

The name of an object type is built by its content (singular) followed by a _ot suffix.

Optionally prefixed by a project abbreviation.

Example: employee_ot

Package

Name is built from the content that is contained within the package.

Optionally prefixed by a project abbreviation.

Examples:

employees_api - API for the employee table

logging_up - Utilities including logging support

Primary Key Constraint

Table name or table abbreviation followed by the suffix _pk .

Examples:

employees_pk

departments_pk

sct_contracts_pk

PL/SQL & SQL Coding Guidelines Version 4.1 Page 16 of 193

Procedure

Name is built from a verb followed by a noun. The name of the procedure should answer the question “What is done?”

Procedures and functions are often named with underscores between words because some editors write all letters in
uppercase in the object tree, so it is difficult to read them.

Optionally prefixed by a project abbreviation.

Examples:

calculate_salary

set_hiredate

check_order_state

Sequence

Name is built from the table name (or its abbreviation) the sequence serves as primary key generator and the suffix
_seq or the purpose of the sequence followed by a _seq .

Optionally prefixed by a project abbreviation.

Examples:

employees_seq

order_number_seq

Synonym

Synonyms should be used to address an object in a foreign schema rather than to rename an object. Therefore,
synonyms should share the name with the referenced object.

System Trigger

Name of the event the trigger is based on.

Activity done by the trigger

Suffix _trg

Examples:

ddl_audit_trg

logon_trg

PL/SQL & SQL Coding Guidelines Version 4.1 Page 17 of 193

Table

Plural1 name of what is contained in the table (unless the table is designed to always hold one row only – then you
should use a singular name).

Suffixed by _eb when protected by an editioning view.

Add a comment to the database dictionary for every table and every column in the table.

Optionally prefixed by a project abbreviation.

Examples:

employees

departments

countries_eb - table interfaced by an editioning view named countries

sct_contracts

sct_contract_lines

sct_incentive_modules

Temporary Table (Global Temporary Table)

Naming as described for tables.

Optionally suffixed by _tmp

Optionally prefixed by a project abbreviation.

Examples:

employees_tmp

contracts_tmp

Unique Key Constraint

Table name or table abbreviation followed by the role of the unique key constraint, a _uk and an optional number
suffix.

Examples:

employees_name_uk

departments_deptno_uk

sct_contracts_uk

sct_coli_uk

sct_icmd_uk1

PL/SQL & SQL Coding Guidelines Version 4.1 Page 18 of 193

View

Plural1 name of what is contained in the view. Optionally suffixed by an indicator identifying the object as a view
(mostly used, when a 1:1 view layer lies above the table layer)

Editioning views are named like the original underlying table to avoid changing the existing application code when
introducing edition based redefinition (EBR).

Add a comment to the database dictionary for every view and every column.

Optionally prefixed by a project abbreviation.

Examples:

active_orders

orders_v - a view to the orders table

countries - an editioning view for table countries_eb

PL/SQL & SQL Coding Guidelines Version 4.1 Page 19 of 193

Coding Style

Formatting

Rules

Rule Description

1 Keywords and names are written in lowercase 2.

2 3 space indention3.

3 One command per line.

4 Keywords loop , else , elsif , end if , when on a new line.

5 Commas in front of separated elements.

6 Call parameters aligned, operators aligned, values aligned.

7 SQL keywords are right aligned within a SQL command.

8 Within a program unit only line comments -- are used.

9 Brackets are used when needed or when helpful to clarify a construct.

Example

PL/SQL & SQL Coding Guidelines Version 4.1 Page 20 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

procedure set_salary(in_employee_id in employees.employee_id%type) is
 cursor c_employees(p_employee_id in employees.employee_id%type) is
 select last_name
 ,first_name
 ,salary
 from employees
 where employee_id = p_employee_id
 order by last_name
 ,first_name;

 r_employee c_employees%rowtype;
 l_new_salary employees.salary%type;
begin
 open c_employees(p_employee_id => in_employee_id);
 fetch c_employees into r_employee;
 close c_employees;

 new_salary(in_employee_id => in_employee_id
 ,out_salary => l_new_salary);

 -- Check whether salary has changed
 if r_employee.salary <> l_new_salary then
 update employees
 set salary = l_new_salary
 where employee_id = in_employee_id;
 end if;
end set_salary;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 21 of 193

Code Commenting

Conventions

Inside a program unit only use the line commenting technique -- unless you temporarly deactivate code sections for
testing.

To comment the source code for later document generation, comments like /** ... */ are used. Within these
documentation comments, tags may be used to define the documentation structure.

Tools like Oracle SQL Developer or PL/SQL Developer include documentation functionality based on a javadoc-like
tagging.

Commenting Tags

Tag Meaning Example

param Description of a parameter. @param in_string input string

return Description of the return value of a function. @return result of the calculation

throws Describe errors that may be raised by the program unit. @throws NO_DATA_FOUND

Example

This is an example using the documentation capabilities of SQL Developer.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

/**
Check whether we passed a valid sql name

@param in_name string to be checked
@return in_name if the string represents a valid sql name
@throws ORA-44003: invalid SQL name

Call Example:
<pre>
 select TVDAssert.valid_sql_name('TEST') from dual;
 select TVDAssert.valid_sql_name('123') from dual
</pre>
*/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 22 of 193

Language Usage

General

G-1010: Try to label your sub blocks.

Maintainability

Reason

It's a good alternative for comments to indicate the start and end of a named processing.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

begin
 begin
 null;
 end;

 begin
 null;
 end;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

begin
 <<prepare_data>>
 begin
 null;
 end prepare_data;

 <<process_data>>
 begin
 null;
 end process_data;
end good;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 23 of 193

G-1020: Always have a matching loop or block label.

Maintainability

Reason

Use a label directly in front of loops and nested anonymous blocks:

To give a name to that portion of code and thereby self-document what it is doing.

So that you can repeat that name with the end statement of that block or loop.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

declare
 i integer;
 co_min_value constant integer := 1;
 co_max_value constant integer := 10;
 co_increment constant integer := 1;
begin
 <<prepare_data>>
 begin
 null;
 end;

 <<process_data>>
 begin
 null;
 end;

 i := co_min_value;
 <<while_loop>>
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 end loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop;

 <<for_loop>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 24 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

declare
 i integer;
 co_min_value constant integer := 1;
 co_max_value constant integer := 10;
 co_increment constant integer := 1;
begin
 <<prepare_data>>
 begin
 null;
 end prepare_data;

 <<process_data>>
 begin
 null;
 end process_data;

 i := co_min_value;
 <<while_loop>>
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 25 of 193

G-1030: Avoid defining variables that are not used.

Efficiency, Maintainability

Reason

Unused variables decrease the maintainability and readability of your code.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body my_package is
 procedure my_proc is
 l_last_name employees.last_name%type;
 l_first_name employees.first_name%type;
 co_department_id constant departments.department_id%type := 10;
 e_good exception;
 begin
 select e.last_name
 into l_last_name
 from employees e
 where e.department_id = co_department_id;
 exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

create or replace package body my_package is
 procedure my_proc is
 l_last_name employees.last_name%type;
 co_department_id constant departments.department_id%type := 10;
 e_good exception;
 begin
 select e.last_name
 into l_last_name
 from employees e
 where e.department_id = co_department_id;

 raise e_good;
 exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 26 of 193

G-1040: Avoid dead code.

Maintainability

Reason

Any part of your code, which is no longer used or cannot be reached, should be eliminated from your programs to
simplify the code.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

declare
 co_dept_purchasing constant departments.department_id%type := 30;
begin
 if 2 = 3 then
 null; -- some dead code here
 end if;

 null; -- some enabled code here

 <<my_loop>>
 loop
 exit my_loop;
 null; -- some dead code here
 end loop my_loop;

 null; -- some other enabled code here

 case
 when 1 = 1 and 'x' = 'y' then
 null; -- some dead code here
 else
 null; -- some further enabled code here
 end case;

 <<my_loop2>>
 for r_emp in (
 select last_name
 from employees
 where department_id = co_dept_purchasing
 or commission_pct is not null
 and 5 = 6
)
 -- "or commission_pct is not null" is dead code
 loop
 sys.dbms_output.put_line(r_emp.last_name);
 end loop my_loop2;

 return;
 null; -- some dead code here
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 27 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

declare
 co_dept_admin constant dept.deptno%type := 10;
begin
 null; -- some enabled code here
 null; -- some other enabled code here
 null; -- some further enabled code here

 <<my_loop2>>
 for r_emp in (
 select last_name
 from employees
 where department_id = co_dept_admin
 or commission_pct is not null
)
 loop
 sys.dbms_output.put_line(r_emp.last_name);
 end loop my_loop2;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 28 of 193

G-1050: Avoid using literals in your code.

Changeability

Reason

Literals are often used more than once in your code. Having them defined as a constant reduces typos in your code and
improves the maintainability.

All constants should be collated in just one package used as a library. If these constants should be used in SQL too it is
good practice to write a deterministic package function for every constant.

In specific situations this rule could lead to an extreme plethora of constants, for example if you use Logger like
logger.append_param(p_params =>l_params, p_name => 'p_param1_todo', p_val => p_param1_todo); , where the
value for p_name always should be the name of the variable that is passed to p_val . For such cases it would be
overkill to add constants for every single variable name you are logging, so if you use Logger or similar, consider
making that an exception to the rule, just document exactly which exceptions you will allow and stick to them.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

declare
 l_job employees.job_id%type;
begin
 select e.job_id
 into l_job
 from employees e
 where e.manager_id is null;

 if l_job = 'AD_PRES' then
 null;
 end if;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 29 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

create or replace package constants_up is
 co_president constant employees.job_id%type := 'AD_PRES';
end constants_up;
/

declare
 l_job employees.job_id%type;
begin
 select e.job_id
 into l_job
 from employees e
 where e.manager_id is null;

 if l_job = constants_up.co_president then
 null;
 end if;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 30 of 193

G-1060: Avoid storing ROWIDs or UROWIDs in database tables.

Reliability

Reason

It is an extremely dangerous practice to store rowid 's in a table, except for some very limited scenarios of runtime
duration. Any manually explicit or system generated implicit table reorganization will reassign the row's rowid and
break the data consistency.

Instead of using rowid for later reference to the original row one should use the primary key column(s).

Example (bad)

Example (good)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

begin
 insert into employees_log (
 employee_id
 ,last_name
 ,first_name
 ,rid
)
 select employee_id
 ,last_name
 ,first_name
 ,rowid
 from employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

begin
 insert into employees_log (employee_id
 ,last_name
 ,first_name)
 select employee_id
 ,last_name
 ,first_name
 from employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 31 of 193

G-1070: Avoid nesting comment blocks.

Maintainability

Reason

Having an end-of-comment within a block comment will end that block-comment. This does not only influence your
code but is also very hard to read.

Example (bad)

Example (good)

Minor

1
2
3
4
5
6
7

begin
 /* comment one -- nested comment two */
 null;
 -- comment three /* nested comment four */
 null;
end;
/

1
2
3
4
5
6
7

begin
 /* comment one, comment two */
 null;
 -- comment three, comment four
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 32 of 193

G-1080: Avoid using the same expression on both sides of a relational comparison operator
or a logical operator.

Maintainability, Efficiency, Testability

Reason

Using the same value on either side of a binary operator is almost always a mistake. In the case of logical operators, it
is either a copy/paste error and therefore a bug, or it is simply wasted code and should be simplified.

This rule ignores operators + , * and || , and expressions: 1=1 , 1<>1 , 1!=1 , 1~=1 and 1^=1 .

Example (bad)

Example (good)

Minor

1
2
3
4
5
6
7
8

select emp.first_name
 ,emp.last_name
 ,emp.salary
 ,emp.hire_date
 from employees emp
 where emp.salary > 3000
 or emp.salary > 3000
 order by emp.last_name,emp.first_name;

1
2
3
4
5
6
7

select emp.first_name
 ,emp.last_name
 ,emp.salary
 ,emp.hire_date
 from employees emp
 where emp.salary > 3000
 order by emp.last_name,emp.first_name;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 33 of 193

Variables & Types

General

G-2110: Try to use anchored declarations for variables, constants and types.

Maintainability, Reliability

REASON

Changing the size of the database column last_name in the employees table from varchar2(20) to varchar2(30) will
result in an error within your code whenever a value larger than the hard coded size is read from the table. This can be
avoided using anchored declarations.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body my_package is
 procedure my_proc is
 l_last_name varchar2(20 char);
 co_first_row constant integer := 1;
 begin
 select e.last_name
 into l_last_name
 from employees e
 where rownum = co_first_row;
 exception
 when no_data_found then
 null; -- handle no_data_found
 when too_many_rows then
 null; -- handle too_many_rows (impossible)
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body my_package is
 procedure my_proc is
 l_last_name employees.last_name%type;
 co_first_row constant integer := 1;
 begin
 select e.last_name
 into l_last_name
 from employees e
 where rownum = co_first_row;
 exception
 when no_data_found then
 null; -- handle no_data_found
 when too_many_rows then
 null; -- handle too_many_rows (impossible)
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 34 of 193

G-2120: Try to have a single location to define your types.

Changeability

REASON

Single point of change when changing the data type. No need to argue where to define types or where to look for
existing definitions.

A single location could be either a type specification package or the database (database-defined types).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8
9

create or replace package body my_package is
 procedure my_proc is
 subtype big_string_type is varchar2(1000 char);
 l_note big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package types_up is
 subtype big_string_type is varchar2(1000 char);
end types_up;
/

create or replace package body my_package is
 procedure my_proc is
 l_note types_up.big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 35 of 193

G-2130: Try to use subtypes for constructs used often in your code.

Changeability

REASON

Single point of change when changing the data type.

Your code will be easier to read as the usage of a variable/constant may be derived from its definition.

EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS

Type Usage

ora_name_type Object corresponding to the Oracle naming conventions (table, variable, column, package, etc.).

max_vc2_type String variable with maximal VARCHAR2 size.

array_index_type Best fitting data type for array navigation.

id_type Data type used for all primary key (id) columns.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8

create or replace package body my_package is
 procedure my_proc is
 l_note varchar2(1000 char);
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package types_up is
 subtype big_string_type is varchar2(1000 char);
end types_up;
/

create or replace package body my_package is
 procedure my_proc is
 l_note types_up.big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 36 of 193

G-2135: Avoid assigning values to local variables that are not used by a subsequent statement.

Efficiency, Maintainability, Testability

REASON

Expending resources calculating and assigning values to a local variable and never use the value subsequently is at
best a waste, at worst indicative of a mistake that leads to a bug.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

create or replace package body my_package is
 procedure my_proc is
 co_employee_id constant employees.employee_id%type := 1042;
 l_last_name employees.last_name%type;
 l_message varchar2(100 char);
 begin
 select emp.last_name
 into l_last_name
 from employees emp
 where emp.employee_id = co_employee_id;

 l_message := 'Hello, ' || l_last_name;
 exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

create or replace package body my_package is
 procedure my_proc is
 co_employee_id constant employees.employee_id%type := 1042;
 l_last_name employees.last_name%type;
 l_message varchar2(100 char);
 begin
 select emp.last_name
 into l_last_name
 from employees emp
 where emp.employee_id = co_employee_id;

 l_message := 'Hello, ' || l_last_name;

 message_api.send_message(l_message);
 exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 37 of 193

G-2140: Never initialize variables with NULL.

Maintainability

REASON

Variables are initialized to null by default.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6

declare
 l_note big_string_type := null;
begin
 sys.dbms_output.put_line(l_note);
end;
/

1
2
3
4
5
6

declare
 l_note big_string_type;
begin
 sys.dbms_output.put_line(l_note);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 38 of 193

G-2145: Never self-assign a variable.

Maintainability

REASON

There is no reason to assign a variable to itself. It is either a redundant statement that should be removed, or it is a
mistake where some other value was intended in the assignment.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8

declare
 l_function_result pls_integer;
 l_parallel_degree pls_integer;
begin
 l_function_result := maintenance.get_config('parallel_degree');
 l_parallel_degree := l_parallel_degree;
end;
/

1
2
3
4
5
6
7
8

declare
 l_function_result pls_integer;
 l_parallel_degree pls_integer;
begin
 l_function_result := maintenance.get_config('parallel_degree');
 l_parallel_degree := l_function_result;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 39 of 193

G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.

Portability, Reliability

REASON

The null value can cause confusion both from the standpoint of code review and code execution. You must always
use the is null or is not null syntax when you need to check if a value is or is not null .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Blocker

1
2
3
4
5
6
7
8

declare
 l_value integer;
begin
 if l_value = null then
 null;
 end if;
end;
/

1
2
3
4
5
6
7
8

declare
 l_value integer;
begin
 if l_value is null then
 null;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 40 of 193

G-2160: Avoid initializing variables using functions in the declaration section.

Reliability

REASON

If your initialization fails, you will not be able to handle the error in your exceptions block.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

1
2
3
4
5
6
7
8

declare
 co_department_id constant integer := 100;
 l_department_name departments.department_name%type :=
 department_api.name_by_id(in_id => co_department_id);
begin
 sys.dbms_output.put_line(l_department_name);
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

declare
 co_department_id constant integer := 100;
 co_unkown_name constant departments.department_name%type := 'unknown';
 l_department_name departments.department_name%type;
begin
 <<init>>
 begin
 l_department_name := department_api.name_by_id(in_id => co_department_id);
 exception
 when value_error then
 l_department_name := co_unkown_name;
 end init;

 sys.dbms_output.put_line(l_department_name);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 41 of 193

G-2170: Never overload variables.

Reliability

REASON

The readability of your code will be higher when you do not overload variables.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

begin
 <<main>>
 declare
 co_main constant user_objects.object_name%type := 'test_main';
 co_sub constant user_objects.object_name%type := 'test_sub';
 co_sep constant user_objects.object_name%type := ' - ';
 l_variable user_objects.object_name%type := co_main;
 begin
 <<sub>>
 declare
 l_variable user_objects.object_name%type := co_sub;
 begin
 sys.dbms_output.put_line(l_variable
 || co_sep
 || main.l_variable);
 end sub;
 end main;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

begin
 <<main>>
 declare
 co_main constant user_objects.object_name%type := 'test_main';
 co_sub constant user_objects.object_name%type := 'test_sub';
 co_sep constant user_objects.object_name%type := ' - ';
 l_main_variable user_objects.object_name%type := co_main;
 begin
 <<sub>>
 declare
 l_sub_variable user_objects.object_name%type := co_sub;
 begin
 sys.dbms_output.put_line(l_sub_variable
 || co_sep
 || l_main_variable);
 end sub;
 end main;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 42 of 193

G-2180: Never use quoted identifiers.

Maintainability

REASON

Quoted identifiers make your code hard to read and maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 "sal+comm" integer;
 "my constant" constant integer := 1;
 "my exception" exception;
begin
 "sal+comm" := "my constant";
exception
 when "my exception" then
 null;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 l_sal_comm integer;
 co_my_constant constant integer := 1;
 e_my_exception exception;
begin
 l_sal_comm := co_my_constant;
exception
 when e_my_exception then
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 43 of 193

G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.

Maintainability

REASON

You should ensure that the name you have chosen well defines its purpose and usage. While you can save a few
keystrokes typing very short names, the resulting code is obscure and hard for anyone besides the author to
understand.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 i integer;
 c constant integer := 1;
 e exception;
begin
 i := c;
exception
 when e then
 null;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 l_sal_comm integer;
 co_my_constant constant integer := 1;
 e_my_exception exception;
begin
 l_sal_comm := co_my_constant;
exception
 when e_my_exception then
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 44 of 193

G-2190: Avoid using ROWID or UROWID.

Portability, Reliability

REASON

Be careful about your use of Oracle-specific data types like rowid and urowid . They might offer a slight improvement
in performance over other means of identifying a single row (primary key or unique index value), but that is by no means
guaranteed.

Use of rowid or urowid means that your SQL statement will not be portable to other SQL databases. Many developers
are also not familiar with these data types, which can make the code harder to maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8
9

declare
 l_department_name departments.department_name%type;
 l_rowid rowid;
begin
 update departments
 set department_name = l_department_name
 where rowid = l_rowid;
end;
/

1
2
3
4
5
6
7
8
9

declare
 l_department_name departments.department_name%type;
 l_department_id departments.department_id%type;
begin
 update departments
 set department_name = l_department_name
 where department_id = l_department_id;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 45 of 193

Numeric Data Types

G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.

Efficiency

REASON

If you do not specify precision number is defaulted to 38 or the maximum supported by your system, whichever is less.
You may well need all this precision, but if you know you do not, you should specify whatever matches your needs.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8
9

create or replace package body constants_up is
 co_small_increase constant number := 0.1;

 function small_increase return number is
 begin
 return co_small_increase;
 end small_increase;
end constants_up;
/

1
2
3
4
5
6
7
8
9

create or replace package body constants_up is
 co_small_increase constant number(5,1) := 0.1;

 function small_increase return number is
 begin
 return co_small_increase;
 end small_increase;
end constants_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 46 of 193

G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.

Efficiency

REASON

pls_integer having a length of -2,147,483,648 to 2,147,483,647, on a 32bit system.

There are many reasons to use pls_integer instead of number :

pls_integer uses less memory

pls_integer uses machine arithmetic, which is up to three times faster than library arithmetic, which is used by
number .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8
9

create or replace package body constants_up is
 co_big_increase constant number(5,0) := 1;

 function big_increase return number is
 begin
 return co_big_increase;
 end big_increase;
end constants_up;
/

1
2
3
4
5
6
7
8
9

create or replace package body constants_up is
 co_big_increase constant pls_integer := 1;

 function big_increase return pls_integer is
 begin
 return co_big_increase;
 end big_increase;
end constants_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 47 of 193

G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

Efficiency

REASON

simple_integer does no checks on numeric overflow, which results in better performance compared to the other
numeric datatypes.

With Oracle 11g, the new data type simple_integer has been introduced. It is a sub-type of pls_integer and covers
the same range. The basic difference is that simple_integer is always not null . When the value of the declared
variable is never going to be null then you can declare it as simple_integer . Another major difference is that you will
never face a numeric overflow using simple_integer as this data type wraps around without giving any error.
simple_integer data type gives major performance boost over pls_integer when code is compiled in native
mode, because arithmetic operations on simple_integer type are performed directly at the hardware level.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

create or replace package body constants_up is
 co_big_increase constant number(5,0) := 1;

 function big_increase return number
 deterministic
 is
 begin
 return co_big_increase;
 end big_increase;
end constants_up;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

create or replace package body constants_up is
 co_big_increase constant simple_integer := 1;

 function big_increase return simple_integer
 deterministic
 is
 begin
 return co_big_increase;
 end big_increase;
end constants_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 48 of 193

Character Data Types

G-2310: Avoid using CHAR data type.

Reliability

REASON

char is a fixed length data type, which should only be used when appropriate. char columns/variables are always
filled to its specified lengths; this may lead to unwanted side effects and undesired results.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5

create or replace package types_up
is
 subtype description_type is char(200);
end types_up;
/

1
2
3
4
5

create or replace package types_up
is
 subtype description_type is varchar2(200 char);
end types_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 49 of 193

G-2320: Never use VARCHAR data type.

Portability

REASON

Do not use the varchar data type. Use the varchar2 data type instead. Although the varchar data type is currently
synonymous with varchar2 , the varchar data type is scheduled to be redefined as a separate data type used for
variable-length character strings compared with different comparison semantics.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4

create or replace package types_up is
 subtype description_type is varchar(200);
end types_up;
/

1
2
3
4

create or replace package types_up is
 subtype description_type is varchar2(200 char);
end types_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 50 of 193

G-2330: Never use zero-length strings to substitute NULL.

Portability

REASON

Today zero-length strings and null are currently handled identical by Oracle. There is no guarantee that this will still
be the case in future releases, therefore if you mean null use null .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8
9

create or replace package body constants_up is
 co_null_string constant varchar2(1) := '';

 function null_string return varchar2 is
 begin
 return co_null_string;
 end null_string;
end constants_up;
/

1
2
3
4
5
6
7
8

create or replace package body constants_up is

 function empty_string return varchar2 is
 begin
 return null;
 end empty_string;
end constants_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 51 of 193

G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

Reliability

REASON

Changes to the nls_length_semantic will only be picked up by your code after a recompilation.

In a multibyte environment a varchar2(10) definition may not necessarily hold 10 characters when multibyte
characters are part of the value that should be stored, unless the definition was done using the char semantic.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4

create or replace package types_up is
 subtype description_type is varchar2(200);
end types_up;
/

1
2
3
4

create or replace package types_up is
 subtype description_type is varchar2(200 char);
end types_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 52 of 193

Boolean Data Types

G-2410: Try to use boolean data type for values with dual meaning.

Maintainability

REASON

The use of true and false clarifies that this is a boolean value and makes the code easier to read.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 co_newfile constant pls_integer := 1000;
 co_oldfile constant pls_integer := 500;
 l_bigger pls_integer;
begin
 if co_newfile < co_oldfile then
 l_bigger := constants_up.co_numeric_true;
 else
 l_bigger := constants_up.co_numeric_false;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 co_newfile constant pls_integer := 1000;
 co_oldfile constant pls_integer := 500;
 l_bigger boolean;
begin
 if co_newfile < co_oldfile then
 l_bigger := true;
 else
 l_bigger := false;
 end if;
end;
/

1
2
3
4
5
6
7
8

declare
 co_newfile constant pls_integer := 1000;
 co_oldfile constant pls_integer := 500;
 l_bigger boolean;
begin
 l_bigger := nvl(co_newfile < co_oldfile,false);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 53 of 193

Large Objects

G-2510: Avoid using the LONG and LONG RAW data types.

Portability

REASON

long and long raw data types have been deprecated by Oracle since version 8i - support might be discontinued in
future Oracle releases.

There are many constraints to long datatypes in comparison to the lob types.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package example_package is
 g_long long;
 g_raw long raw;

 procedure do_something;
end example_package;
/

create or replace package body example_package is
 procedure do_something is
 begin
 null;
 end do_something;
end example_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package example_package is
 procedure do_something;
end example_package;
/

create or replace package body example_package is
 g_long clob;
 g_raw blob;

 procedure do_something is
 begin
 null;
 end do_something;
end example_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 54 of 193

Cursor Variables

G-2610: Never use self-defined weak ref cursor types.

Changeability, Maintainability, Portability, Reusability

REASON

There is no reason to define your own weak ref cursor types, as they are not different from the built-in sys_refcursor .
Introducing your own types just gives you unnecessary maintenance to perform.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 type local_weak_cursor_type is ref cursor;
 cv_data local_weak_cursor_type;
begin
 if configuration.use_employee then
 open cv_data for
 select e.employee_id,e.first_name,e.last_name
 from employees e;
 else
 open cv_data for
 select e.emp_id,e.name
 from emp e;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

declare
 cv_data sys_refcursor;
begin
 if configuration.use_employee then
 open cv_data for
 select e.employee_id,e.first_name,e.last_name
 from employees e;
 else
 open cv_data for
 select e.emp_id,e.name
 from emp e;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 55 of 193

DML & SQL

General

G-3110: Always specify the target columns when coding an insert statement.

Maintainability, Reliability

REASON

Data structures often change. Having the target columns in your insert statements will lead to change-resistant code.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6

insert into departments
values (
 departments_seq.nextval
 ,'Support'
 ,100
 ,10);

1
2
3
4
5
6
7
8
9

insert into departments (department_id
 ,department_name
 ,manager_id
 ,location_id)
values (
 departments_seq.nextval
 ,'Support'
 ,100
 ,10);

PL/SQL & SQL Coding Guidelines Version 4.1 Page 56 of 193

G-3115: Avoid self-assigning a column.

Maintainability

REASON

There is normally no reason to assign a column to itself. It is either a redundant statement that should be removed, or it
is a mistake where some other value was intended in the assignment.

One exception to this rule can be when you attempt to fire cross edition triggers when using Edition Based Redefinition.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2

update employees
 set first_name = first_name;

1
2

update employees
 set first_name = initcap(first_name);

PL/SQL & SQL Coding Guidelines Version 4.1 Page 57 of 193

G-3120: Always use table aliases when your SQL statement involves more than one source.

Maintainability

REASON

It is more human readable to use aliases instead of writing columns with no table information.

Especially when using subqueries the omission of table aliases may end in unexpected behavior and result.

EXAMPLE (BAD)

If the jobs table has no employee_id column and employees has one this query will not raise an error but return all
rows of the employees table as a subquery is allowed to access columns of all its parent tables - this construct is
known as correlated subquery.

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Using meaningful aliases improves the readability of your code.

If the jobs table has no employee_id column this query will return an error due to the directive (given by adding the

Major

1
2
3
4
5
6
7

select last_name
 ,first_name
 ,department_name
 from employees
 join departments
 using (department_id)
 where extract(month from hire_date) = extract(month from sysdate);

1
2
3
4
5
6
7
8

select last_name
 ,first_name
 from employees
 where employee_id in (
 select employee_id
 from jobs
 where job_title like '%Manager%'
);

1
2
3
4
5
6
7

select e.last_name
 ,e.first_name
 ,d.department_name
 from employees e
 join departments d
 on (e.department_id = d.department_id)
 where extract(month from e.hire_date) = extract(month from sysdate);

1
2
3
4
5
6
7

select emp.last_name
 ,emp.first_name
 ,dept.department_name
 from employees emp
 join departments dept
 on (emp.department_id = dept.department_id)
 where extract(month from emp.hire_date) = extract(month from sysdate);

PL/SQL & SQL Coding Guidelines Version 4.1 Page 58 of 193

table alias to the column) to read the employee_id column from the jobs table.

1
2
3
4
5
6
7
8

select emp.last_name
 ,emp.first_name
 from employees emp
 where emp.employee_id in (
 select j.employee_id
 from jobs j
 where j.job_title like '%Manager%'
);

PL/SQL & SQL Coding Guidelines Version 4.1 Page 59 of 193

G-3130: Try to use ANSI SQL-92 join syntax.

Maintainability, Portability

REASON

ANSI SQL-92 join syntax supports the full outer join. A further advantage of the ANSI SQL-92 join syntax is the
separation of the join condition from the query filters.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8

select e.employee_id
 ,e.last_name
 ,e.first_name
 ,d.department_name
 from employees e
 ,departments d
 where e.department_id = d.department_id
 and extract(month from e.hire_date) = extract(month from sysdate);

1
2
3
4
5
6
7
8

select emp.employee_id
 ,emp.last_name
 ,emp.first_name
 ,dept.department_name
 from employees emp
 join departments dept
 on dept.department_id = emp.department_id
 where extract(month from emp.hire_date) = extract(month from sysdate);

PL/SQL & SQL Coding Guidelines Version 4.1 Page 60 of 193

G-3140: Try to use anchored records as targets for your cursors.

Maintainability, Reliability

REASON

Using cursor-anchored records as targets for your cursors results enables the possibility of changing the structure of
the cursor without regard to the target structure.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

declare
 cursor c_employees is
 select employee_id,first_name,last_name
 from employees;
 l_employee_id employees.employee_id%type;
 l_first_name employees.first_name%type;
 l_last_name employees.last_name%type;
begin
 open c_employees;
 fetch c_employees into l_employee_id,l_first_name,l_last_name;
 <<process_employees>>
 while c_employees%found
 loop
 -- do something with the data
 fetch c_employees into l_employee_id,l_first_name,l_last_name;
 end loop process_employees;
 close c_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 cursor c_employees is
 select employee_id,first_name,last_name
 from employees;
 r_employee c_employees%rowtype;
begin
 open c_employees;
 fetch c_employees into r_employee;
 <<process_employees>>
 while c_employees%found
 loop
 -- do something with the data
 fetch c_employees into r_employee;
 end loop process_employees;
 close c_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 61 of 193

G-3145: Avoid using SELECT * directly from a table or view.

Efficiency, Maintainability, Reliability, Testability

REASON

Use of SELECT * when querying a table or view makes it impossible for the optimizer to take into account which
columns will actually be used by the application, potentially leading to sub-optimal execution plans (for example full
scanning the table where a full scan of an index might have sufficed.) Also SELECT * possibly can break your code in
the future in case of changes to the table structure (for example new or invisible columns.)

Exceptions to the rule can be when querying an inline view (where the SELECT * is just to avoid repeating same
columns as inside the inline view), or when fetching into records defined as MYTABLE%ROWTYPE for the purpose of
processing all columns of the record.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

begin
 for r_employee in (
 select *
 from employees
)
 loop
 employee_api.calculate_raise_by_seniority(
 id_in => r_employee.id
 ,salary_in => r_employee.salary
 ,hiredate_in => r_employee.hiredate
);
 end loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

begin
 for r_employee in (
 select id,salary,hiredate
 from employees
)
 loop
 employee_api.calculate_raise_by_seniority(
 id_in => r_employee.id
 ,salary_in => r_employee.salary
 ,hiredate_in => r_employee.hiredate
);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 62 of 193

G-3150: Try to use identity columns for surrogate keys.

Maintainability, Reliability

RESTRICTION

Oracle Database 12c

REASON

An identity column is a surrogate key by design – there is no reason why we should not take advantage of this natural
implementation when the keys are generated on database level. Using identity column (and therefore assigning
sequences as default values on columns) has a huge performance advantage over a trigger solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

generated always as identity ensures that the location_id is populated by a sequence. It is not possible to
override the behavior in the application.

However, if you use a framework that produces an insert statement including the surrogate key column, and you
cannot change this behavior, then you have to use the generated by default on null as identity option. This has
the downside that the application may pass a value, which might lead to an immediate or delayed ORA-00001: unique
constraint violated error.

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

create table locations (
 location_id number(10) not null
 ,location_name varchar2(60 char) not null
 ,city varchar2(30 char) not null
 ,constraint locations_pk primary key (location_id)
)
/

create sequence location_seq start with 1 cache 20
/

create or replace trigger location_br_i
before insert on locations
for each row
begin
 :new.location_id := location_seq.nextval;
end;
/

1
2
3
4
5
6

create table locations (
 location_id number(10) generated always as identity
 ,location_name varchar2(60 char) not null
 ,city varchar2(30 char) not null
 ,constraint locations_pk primary key (location_id))
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 63 of 193

G-3160: Avoid visible virtual columns.

Maintainability, Reliability

We cannot identify the type of a column. Requires create table and alter table parser support or access to
the Oracle Data Dictionary.

RESTRICTION

Oracle Database 12c

REASON

In contrast to visible columns, invisible columns are not part of a record defined using %rowtype construct. This is
helpful as a virtual column may not be programmatically populated. If your virtual column is visible you have to
manually define the record types used in API packages to be able to exclude them from being part of the record
definition.

Invisible columns may be accessed by explicitly adding them to the column list in a select statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

alter table employees
 add total_salary generated always as (salary + nvl(commission_pct,0) * salary)
/

declare
 r_employee employees%rowtype;
 l_id employees.employee_id%type := 107;
begin
 r_employee := employee_api.employee_by_id(l_id);
 r_employee.salary := r_employee.salary * constants_up.small_increase();

 update employees
 set row = r_employee
 where employee_id = l_id;
end;
/

Error report -
ORA-54017: update operation disallowed on virtual columns
ORA-06512: at line 9

PL/SQL & SQL Coding Guidelines Version 4.1 Page 64 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

alter table employees
 add total_salary invisible generated always as
 (salary + nvl(commission_pct,0) * salary)
/

declare
 r_employee employees%rowtype;
 co_id constant employees.employee_id%type := 107;
begin
 r_employee := employee_api.employee_by_id(co_id);
 r_employee.salary := r_employee.salary * constants_up.small_increase();

 update employees
 set row = r_employee
 where employee_id = co_id;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 65 of 193

G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store
NULL values.

Reliability

We cannot identify column default values. Requires create table and alter table parser support or access to
the Oracle Data Dictionary.

RESTRICTION

Oracle Database 12c

REASON

Default values have been nullifiable until Oracle 12c. Meaning any tool sending null as a value for a column having a
default value bypassed the default value. Starting with Oracle 12c default definitions may have an on null definition
in addition, which will assign the default value in case of a null value too.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create table null_test (
 test_case number(2) not null
 ,column_defaulted varchar2(10 char) default 'Default')
/
insert into null_test(test_case, column_defaulted) values (1,'Value');
insert into null_test(test_case, column_defaulted) values (2,default);
insert into null_test(test_case, column_defaulted) values (3,null);

select * from null_test;

TEST_CASE COLUMN_DEF
--------- -----------
 1 Value
 2 Default
 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create table null_test (
 test_case number(2) not null
 ,column_defaulted varchar2(10 char) default on null 'Default')
/
insert into null_test(test_case, column_defaulted) values (1,'Value');
insert into null_test(test_case, column_defaulted) values (2,default);
insert into null_test(test_case, column_defaulted) values (3,null);

select * from null_test;

 TEST_CASE COLUMN_DEF
---------- ----------
 1 Value
 2 Default
 3 Default

PL/SQL & SQL Coding Guidelines Version 4.1 Page 66 of 193

G-3180: Always specify column names instead of positional references in ORDER BY clauses.

Changeability, Reliability

REASON

If you change your select list afterwards the order by will still work but order your rows differently, when not
changing the positional number. Furthermore, it is not comfortable to the readers of the code, if they have to count the
columns in the select list to know the way the result is ordered.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6

select upper(first_name)
 ,last_name
 ,salary
 ,hire_date
 from employees
 order by 4,1,3;

1
2
3
4
5
6
7
8

select upper(first_name) as first_name
 ,last_name
 ,salary
 ,hire_date
 from employees
 order by hire_date
 ,first_name
 ,salary;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 67 of 193

G-3185: Never use ROWNUM at the same query level as ORDER BY.

Reliability, Testability

REASON

The rownum pseudo-column is assigned before the order by clause is used, so using rownum on the same query level
as order by will not assign numbers in the desired ordering. Instead you should move the order by into an inline
view and use rownum in the outer query.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8

select first_name
 ,last_name
 ,salary
 ,hire_date
 ,rownum as salary_rank
 from employees
 where rownum <= 5
 order by salary desc;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

select first_name
 ,last_name
 ,salary
 ,hire_date
 ,rownum as salary_rank
 from (
 select first_name
 ,last_name
 ,salary
 ,hire_date
 from employees
 order by salary desc
)
 where rownum <= 5;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 68 of 193

G-3190: Avoid using NATURAL JOIN.

Changeability, Reliability

REASON

A natural join joins tables on equally named columns. This may comfortably fit on first sight, but adding logging
columns to a table (changed_by , changed_date) will result in inappropriate join conditions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

select department_name
 ,last_name
 ,first_name
 from employees natural join departments
 order by department_name
 ,last_name;

DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
...

alter table departments add modified_at date default on null sysdate;
alter table employees add modified_at date default on null sysdate;

select department_name
 ,last_name
 ,first_name
 from employees natural join departments
 order by department_name
 ,last_name;

No data found

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

select d.department_name
 ,e.last_name
 ,e.first_name
 from employees e
 join departments d on (e.department_id = d.department_id)
 order by d.department_name
 ,e.last_name;

DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
...

PL/SQL & SQL Coding Guidelines Version 4.1 Page 69 of 193

G-3195: Always use wildcards in a LIKE clause.

Maintainability

REASON

Using like without at least one wildcard (% or _) is unclear to a maintainer whether a wildcard is forgotten or it is
meant as equality test. A common antipattern is also to forget that an underscore is a wildcard, so using like instead
of equal can return unwanted rows. If the char datatype is involved, there is also the danger of like not using blank
padded comparison where equal will. Depending on use case, you should either remember at least one wildcard or use
normal equality operator.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Using a wildcard:

Change to equality operator instead:

Minor

1
2
3
4

select e.employee_id
 ,e.last_name
 from employees e
 where e.last_name like 'Smith';

1
2
3
4

select e.employee_id
 ,e.last_name
 from employees e
 where e.last_name like 'Smith%';

1
2
3
4

select e.employee_id
 ,e.last_name
 from employees e
 where e.last_name = 'Smith';

PL/SQL & SQL Coding Guidelines Version 4.1 Page 70 of 193

Bulk Operations

G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement
for more than 4 times.

Efficiency

REASON

Context switches between PL/SQL and SQL are extremely costly. BULK Operations reduce the number of switches by
passing an array to the SQL engine, which is used to execute the given statements repeatedly.

(Depending on the PLSQL_OPTIMIZE_LEVEL parameter a conversion to BULK COLLECT will be done by the PL/SQL
compiler automatically.)

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase constant employees.salary%type := 0.1;
 co_department_id constant departments.department_id%type := 10;
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 for i in 1..t_employee_ids.count()
 loop
 update employees
 set salary = salary + (salary * co_increase)
 where employee_id = t_employee_ids(i);
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase constant employees.salary%type := 0.1;
 co_department_id constant departments.department_id%type := 10;
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 forall i in 1..t_employee_ids.count()
 update employees
 set salary = salary + (salary * co_increase)
 where employee_id = t_employee_ids(i);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 71 of 193

G-3220: Always process saved exceptions from a FORALL statement.

Reliability, Testability

REASON

Using save exceptions in a forall statement without actually processing the saved exceptions is just wasted work.

If your use of forall is meant to be atomic (all or nothing), don't use save exceptions . If you want to handle errors of
individual rows and do use save exceptions , always include an exception handler block with a loop to process the
saved exceptions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase constant employees.salary%type := 0.1;
 co_department_id constant departments.department_id%type := 10;
 e_bulk_errors exception;
 pragma exception_init(e_bulk_errors,-24381);
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 forall i in 1..t_employee_ids.count() save exceptions
 update employees
 set salary = salary + (salary * co_increase)
 where employee_id = t_employee_ids(i);
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

declare
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase constant employees.salary%type := 0.1;
 co_department_id constant departments.department_id%type := 10;
 e_bulk_errors exception;
 pragma exception_init(e_bulk_errors,-24381);
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 forall i in 1..t_employee_ids.count() save exceptions
 update employees
 set salary = salary + (salary * co_increase)
 where employee_id = t_employee_ids(i);
exception
 when e_bulk_errors then
 <<handle_bulk_exceptions>>
 for i in 1..sql%bulk_exceptions.count
 loop
 logger.log(sql%bulk_exceptions(indx).error_code);
 end loop handle_bulk_exceptions;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 72 of 193

Transaction Control

G-3310: Never commit within a cursor loop.

Efficiency, Reliability

REASON

Doing frequent commits within a cursor loop (all types of loops over cursors, whether implicit cursor for loop or loop
with explicit fetch from cursor or cursor variable) risks not being able to complete due to ORA-01555, gives bad
performance, and risks that the work is left in an unknown half-finished state and cannot be restarted.

If the work belongs together (an atomic transaction) the commit should be moved to after the loop. Or even better
if the logic can be rewritten to a single DML statement on all relevant rows instead of a loop, committing after the
single statement.

If each loop iteration is a self-contained atomic transaction, consider instead to populate a collection of
transactions to be done (taking restartability into account by collection population), loop over that collection
(instead of looping over a cursor) and call a procedure (that contains the transaction logic and the commit) in the
loop (see also G-3320).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 l_counter integer := 0;
 l_discount discount.percentage%type;
begin
 for r_order in (
 select o.order_id,o.customer_id
 from orders o
 where o.order_status = 'New'
)
 loop
 l_discount := sales_api.calculate_discount(p_customer_id => r_order.customer_id);

 update order_lines ol
 set ol.discount = l_discount
 where ol.order_id = r_order.order_id;

 l_counter := l_counter + 1;
 if l_counter = 100 then
 commit;
 l_counter := 0;
 end if;
 end loop;
 if l_counter > 0 then
 commit;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 73 of 193

EXAMPLE (BEST)

(Assuming suitable foreign key relationship exists to allow updating a join.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

declare
 l_discount discount.percentage%type;
begin
 for r_order in (
 select o.order_id,o.customer_id
 from orders o
 where o.order_status = 'New'
)
 loop
 l_discount := sales_api.calculate_discount(p_customer_id => r_order.customer_id);

 update order_lines ol
 set ol.discount = l_discount
 where ol.order_id = r_order.order_id;
 end loop;

 commit;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

begin
 update (
 select o.customer_id,ol.discount
 from orders o
 join order_lines ol
 on ol.order_id = o.order_id
 where o.order_status = 'New'
)
 set discount = sales_api.calculate_discount(p_customer_id => customer_id);

 commit;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 74 of 193

G-3320: Try to move transactions within a non-cursor loop into procedures.

Maintainability, Reusability, Testability

REASON

Commit inside a non-cursor loop (other loop types than loops over cursors - see also G-3310) is either a self-contained
atomic transaction, or it is a chunk (with suitable restartability handling) of very large data manipulations. In either case
encapsulating the transaction in a procedure is good modularity, enabling reuse and testing of a single call.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

begin
 for l_counter in 1..5
 loop
 insert into headers (id,text) values (l_counter,'Number ' || l_counter);

 insert into lines (header_id,line_no,text)
 select l_counter,rownum,'Line ' || rownum
 from dual
 connect by level <= 3;

 commit;
 end loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

declare
 procedure create_rows(
 p_header_id in headers.id%type
) is
 begin
 insert into headers (id,text) values (p_header_id,'Number ' || p_header_id);

 insert into lines (header_id,line_no,text)
 select p_header_id,rownum,'Line ' || rownum
 from dual
 connect by level <= 3;

 commit;
 end;
begin
 for l_counter in 1..5
 loop
 create_rows(l_counter);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 75 of 193

Control Structures

CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.

Maintainability

REASON

The readability of your code will be higher when you avoid negative sentences.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 cursor c_employees is
 select last_name
 ,first_name
 from employees
 where commission_pct is not null;

 r_employee c_employees%rowtype;
begin
 open c_employees;

 <<read_employees>>
 loop
 fetch c_employees into r_employee;
 exit read_employees when not c_employees%found;
 end loop read_employees;

 close c_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 cursor c_employees is
 select last_name
 ,first_name
 from employees
 where commission_pct is not null;

 r_employee c_employees%rowtype;
begin
 open c_employees;

 <<read_employees>>
 loop
 fetch c_employees into r_employee;
 exit read_employees when c_employees%notfound;
 end loop read_employees;

 close c_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 76 of 193

G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.

Reliability

REASON

%notfound is set to true as soon as less than the number of rows defined by the limit clause has been read.

EXAMPLE (BAD)

The employees table holds 107 rows. The example below will only show 100 rows as the cursor attribute notfound is
set to true as soon as the number of rows to be fetched defined by the limit clause is not fulfilled anymore.

EXAMPLE (BETTER)

This example will show all 107 rows but execute one fetch too much (12 instead of 11).

Critical

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 cursor c_employees is
 select *
 from employees
 order by employee_id;

 type t_employees_type is table of c_employees%rowtype;
 t_employees t_employees_type;
 co_bulk_size constant simple_integer := 10;
begin
 open c_employees;

 <<process_employees>>
 loop
 fetch c_employees bulk collect into t_employees limit co_bulk_size;
 exit process_employees when c_employees%notfound;

 <<display_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i).last_name);
 end loop display_employees;
 end loop process_employees;

 close c_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 77 of 193

EXAMPLE (GOOD)

This example does the trick (11 fetches only to process all rows)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 cursor c_employees is
 select *
 from employees
 order by employee_id;

 type t_employees_type is table of c_employees%rowtype;
 t_employees t_employees_type;
 co_bulk_size constant simple_integer := 10;
begin
 open c_employees;

 <<process_employees>>
 loop
 fetch c_employees bulk collect into t_employees limit co_bulk_size;
 exit process_employees when t_employees.count() = 0;
 <<display_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i).last_name);
 end loop display_employees;
 end loop process_employees;

 close c_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 cursor c_employees is
 select *
 from employees
 order by employee_id;

 type t_employees_type is table of c_employees%rowtype;
 t_employees t_employees_type;
 co_bulk_size constant simple_integer := 10;
begin
 open c_employees;

 <<process_employees>>
 loop
 fetch c_employees bulk collect into t_employees limit co_bulk_size;
 <<display_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i).last_name);
 end loop display_employees;
 exit process_employees when t_employees.count() <> co_bulk_size;
 end loop process_employees;

 close c_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 78 of 193

G-4130: Always close locally opened cursors.

Efficiency, Reliability

REASON

Any cursors left open can consume additional memory space (i.e. SGA) within the database instance, potentially in
both the shared and private SQL pools. Furthermore, failure to explicitly close cursors may also cause the owning
session to exceed its maximum limit of open cursors (as specified by the open_cursors database initialization
parameter), potentially resulting in the Oracle error of “ORA-01000: maximum open cursors exceeded”.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api as
 function department_salary(in_dept_id in departments.department_id%type)
 return number is
 cursor c_department_salary(p_dept_id in departments.department_id%type) is
 select sum(salary) as sum_salary
 from employees
 where department_id = p_dept_id;
 r_department_salary c_department_salary%rowtype;
 begin
 open c_department_salary(p_dept_id => in_dept_id);
 fetch c_department_salary into r_department_salary;

 return r_department_salary.sum_salary;
 end department_salary;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api as
 function department_salary(in_dept_id in departments.department_id%type)
 return number is
 cursor c_department_salary(p_dept_id in departments.department_id%type) is
 select sum(salary) as sum_salary
 from employees
 where department_id = p_dept_id;
 r_department_salary c_department_salary%rowtype;
 begin
 open c_department_salary(p_dept_id => in_dept_id);
 fetch c_department_salary into r_department_salary;
 close c_department_salary;
 return r_department_salary.sum_salary;
 end department_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 79 of 193

G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

Reliability

REASON

Oracle provides a variety of cursor attributes (like %found and %rowcount) that can be used to obtain information
about the status of a cursor, either implicit or explicit.

You should avoid inserting any statements between the cursor operation and the use of an attribute against that cursor.
Interposing such a statement can affect the value returned by the attribute, thereby potentially corrupting the logic of
your program.

In the following example, a procedure call is inserted between the delete statement and a check for the value of
sql%rowcount , which returns the number of rows modified by that last SQL statement executed in the session. If this
procedure includes a commit / rollback or another implicit cursor the value of sql%rowcount is affected.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

create or replace package body employee_api as
 co_one constant simple_integer := 1;

 procedure process_dept(in_dept_id in departments.department_id%type) is
 begin
 null;
 end process_dept;

 procedure remove_employee(in_employee_id in employees.employee_id%type) is
 l_dept_id employees.department_id%type;
 begin
 delete from employees
 where employee_id = in_employee_id
 returning department_id into l_dept_id;

 process_dept(in_dept_id => l_dept_id);

 if sql%rowcount > co_one then
 -- too many rows deleted.
 rollback;
 end if;
 end remove_employee;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 80 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

create or replace package body employee_api as
 co_one constant simple_integer := 1;

 procedure process_dept(in_dept_id in departments.department_id%type) is
 begin
 null;
 end process_dept;

 procedure remove_employee(in_employee_id in employees.employee_id%type) is
 l_dept_id employees.department_id%type;
 l_deleted_emps simple_integer;
 begin
 delete from employees
 where employee_id = in_employee_id
 returning department_id into l_dept_id;

 l_deleted_emps := sql%rowcount;

 process_dept(in_dept_id => l_dept_id);

 if l_deleted_emps > co_one then
 -- too many rows deleted.
 rollback;
 end if;
 end remove_employee;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 81 of 193

CASE / IF / DECODE / NVL / NVL2 / COALESCE

G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.

Maintainability, Testability

REASON

if statements containing multiple elsif tend to become complex quickly.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 l_color types_up.color_code_type;
begin
 if l_color = constants_up.co_red then
 my_package.do_red();
 elsif l_color = constants_up.co_blue then
 my_package.do_blue();
 elsif l_color = constants_up.co_black then
 my_package.do_black();
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 l_color types_up.color_code_type;
begin
 case l_color
 when constants_up.co_red then
 my_package.do_red();
 when constants_up.co_blue then
 my_package.do_blue();
 when constants_up.co_black then
 my_package.do_black();
 else
 null;
 end case;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 82 of 193

G-4220: Try to use CASE rather than DECODE.

Maintainability, Portability

REASON

decode is an Oracle specific function hard to understand and restricted to SQL only. The “newer” case function is
much more common, has a better readability and may be used within PL/SQL too. Be careful that decode can handle
null values, which the simple case cannot - for such cases you must use the searched case and is null instead.

EXAMPLE (BAD)

null values can be compared in decode :

EXAMPLE (GOOD)

Simple case can not compare null values, instead the searched case expression must be used:

Minor

1
2
3
4
5

6

-- @formatter:off
select decode(ctry.country_code, constants_up.co_ctry_uk, constants_up.co_lang_english
 , constants_up.co_ctry_fr, constants_up.co_lang_french
 , constants_up.co_ctry_de, constants_up.co_lang_german
 ,

constants_up.co_lang_not_supported)
 from countries ctry;

1
2
3
4
5

6

-- @formatter:off
select decode(ctry.country_code, constants_up.co_ctry_uk, constants_up.co_lang_english
 , constants_up.co_ctry_fr, constants_up.co_lang_french
 , null , constants_up.co_lang_unknown
 ,

constants_up.co_lang_not_supported)
 from countries ctry;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

select case ctry.country_code
 when constants_up.co_ctry_uk then
 constants_up.co_lang_english
 when constants_up.co_ctry_fr then
 constants_up.co_lang_french
 when constants_up.co_ctry_de then
 constants_up.co_lang_german
 else
 constants_up.co_lang_not_supported
 end
 from countries ctry;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 83 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

select case
 when ctry.country_code = constants_up.co_ctry_uk then
 constants_up.co_lang_english
 when ctry.country_code = constants_up.co_ctry_fr then
 constants_up.co_lang_french
 when ctry.country_code is null then
 constants_up.co_lang_unknown
 else
 constants_up.co_lang_not_supported
 end
 from countries ctry;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 84 of 193

G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a
SELECT statement.

Efficiency, Reliability

REASON

The nvl function always evaluates both parameters before deciding which one to use. This can be harmful if
parameter 2 is either a function call or a select statement, as it will be executed regardless of whether parameter 1
contains a null value or not.

The coalesce function does not have this drawback.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

1
2

select nvl(dummy,my_package.expensive_null(value_in => dummy))
 from dual;

1
2

select coalesce(dummy,my_package.expensive_null(value_in => dummy))
 from dual;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 85 of 193

G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a
SELECT statement.

Efficiency, Reliability

REASON

The nvl2 function always evaluates all parameters before deciding which one to use. This can be harmful, if
parameter 2 or 3 is either a function call or a select statement, as they will be executed regardless of whether
parameter 1 contains a null value or not.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

1
2
3

select nvl2(dummy,my_package.expensive_nn(value_in => dummy)
 ,my_package.expensive_null(value_in => dummy))
 from dual;

1
2
3
4
5
6
7

select case
 when dummy is null then
 my_package.expensive_null(value_in => dummy)
 else
 my_package.expensive_nn(value_in => dummy)
 end
 from dual;

PL/SQL & SQL Coding Guidelines Version 4.1 Page 86 of 193

G-4250: Avoid using identical conditions in different branches of the same IF or CASE statement.

Maintainability, Reliability, Testability

REASON

Conditions are evaluated top to bottom in branches of a case statement or chain of if / elsif statements. The first
condition to evaluate as true leads to that branch being executed, the rest will never execute. Having an identical
duplicated condition in another branch will never be reached and will be dead code.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 l_color types_up.color_code_type;
begin
 case l_color
 when constants_up.co_red then
 my_package.do_red();
 when constants_up.co_blue then
 my_package.do_blue();
 when constants_up.co_red then -- never reached
 my_package.do_black(); -- dead code
 else
 null;
 end case;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 l_color types_up.color_code_type;
begin
 case l_color
 when constants_up.co_red then
 my_package.do_red();
 when constants_up.co_blue then
 my_package.do_blue();
 when constants_up.co_black then
 my_package.do_black();
 else
 null;
 end case;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 87 of 193

G-4260: Avoid inverting boolean conditions with NOT.

Maintainability, Testability

REASON

It is more readable to use the opposite comparison operator instead of inverting the comparison with not .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8

declare
 l_color varchar2(7 char);
begin
 if not l_color != constants_up.co_red then
 my_package.do_red();
 end if;
end;
/

1
2
3
4
5
6
7
8

declare
 l_color types_up.color_code_type;
begin
 if l_color = constants_up.co_red then
 my_package.do_red();
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 88 of 193

G-4270: Avoid comparing boolean values to boolean literals.

Maintainability, Testability

REASON

It is more readable to simply use the boolean value as a condition itself, rather than use a comparison condition
comparing the boolean value to the literals true or false .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

declare
 l_string varchar2(10 char) := '42';
 l_is_valid boolean;
begin
 l_is_valid := my_package.is_valid_number(l_string);
 if l_is_valid = true then
 my_package.convert_number(l_string);
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

declare
 l_string varchar2(10 char) := '42';
 l_is_valid boolean;
begin
 l_is_valid := my_package.is_valid_number(l_string);
 if l_is_valid then
 my_package.convert_number(l_string);
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 89 of 193

Flow Control

G-4310: Never use GOTO statements in your code.

Maintainability, Testability

REASON

Code containing gotos is hard to format. Indentation should be used to show logical structure, and gotos have an
effect on logical structure. Using indentation to show the logical structure of a goto and its target, however, is
difficult or impossible. (...)

Use of gotos is a matter of religion. My dogma is that in modern languages, you can easily replace nine out of ten
gotos with equivalent sequential constructs. In these simple cases, you should replace gotos out of habit. In the hard
cases, you can still exorcise the goto in nine out of ten cases: You can break the code into smaller routines, use try-
finally, use nested ifs, test and retest a status variable, or restructure a conditional. Eliminating the goto is harder in
these cases, but it’s good mental exercise (...).

-- McConnell, Steve C. (2004). Code Complete. Second Edition. Microsoft Press.

EXAMPLE (BAD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

create or replace package body my_package is
 procedure password_check(in_password in varchar2) is
 co_digitarray constant string(10 char) := '0123456789';
 co_lower_bound constant simple_integer := 1;
 co_errno constant simple_integer := -20501;
 co_errmsg constant string(100 char) := 'Password must contain a digit.';
 l_isdigit boolean := false;
 l_len_pw pls_integer;
 l_len_array pls_integer;
 begin
 l_len_pw := length(in_password);
 l_len_array := length(co_digitarray);

 <<check_digit>>
 for i in co_lower_bound..l_len_array
 loop
 <<check_pw_char>>
 for j in co_lower_bound..l_len_pw
 loop
 if substr(in_password,j,1) = substr(co_digitarray,i,1) then
 l_isdigit := true;
 goto check_other_things;
 end if;
 end loop check_pw_char;
 end loop check_digit;

 <<check_other_things>>
 null;

 if not l_isdigit then
 raise_application_error(co_errno,co_errmsg);
 end if;
 end password_check;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 90 of 193

EXAMPLE (BETTER)

EXAMPLE (GOOD)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

create or replace package body my_package is
 procedure password_check(in_password in varchar2) is
 co_digitarray constant string(10 char) := '0123456789';
 co_lower_bound constant simple_integer := 1;
 co_errno constant simple_integer := -20501;
 co_errmsg constant string(100 char) := 'Password must contain a digit.';
 l_isdigit boolean := false;
 l_len_pw pls_integer;
 l_len_array pls_integer;
 begin
 l_len_pw := length(in_password);
 l_len_array := length(co_digitarray);

 <<check_digit>>
 for i in co_lower_bound..l_len_array
 loop
 <<check_pw_char>>
 for j in co_lower_bound..l_len_pw
 loop
 if substr(in_password,j,1) = substr(co_digitarray,i,1) then
 l_isdigit := true;
 exit check_digit; -- early exit condition
 end if;
 end loop check_pw_char;
 end loop check_digit;

 <<check_other_things>>
 null;

 if not l_isdigit then
 raise_application_error(co_errno,co_errmsg);
 end if;
 end password_check;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 procedure password_check(in_password in varchar2) is
 co_digitpattern constant string(10 char) := '\d';
 co_errno constant simple_integer := -20501;
 co_errmsg constant string(100 char) := 'Password must contain a digit.';
 begin
 if not regexp_like(in_password,co_digitpattern) then
 raise_application_error(co_errno,co_errmsg);
 end if;
 end password_check;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 91 of 193

G-4320: Always label your loops.

Maintainability

REASON

It's a good alternative for comments to indicate the start and end of a named loop processing.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 i integer;
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 10;
 co_increment constant simple_integer := 1;
begin
 i := co_min_value;
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 end loop;

 loop
 exit;
 end loop;

 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop;

 for r_employee in (select last_name from employees)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 92 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

declare
 i integer;
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 10;
 co_increment constant simple_integer := 1;
begin
 i := co_min_value;
 <<while_loop>>
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;

 <<process_employees>>
 for r_employee in (
 select last_name
 from employees
)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 93 of 193

G-4325: Never reuse labels in inner scopes.

Maintainability, Reliability, Testability

REASON

Reusing labels inside the scope of another label with the same name leads to confusion, less chance of understanding
the code, and could lead to bugs (for example if using exit my_label exits at a different nesting level than expected.)

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

<<my_label>>
declare
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 8;
begin
 <<my_label>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

<<output_values>>
declare
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 8;
begin
 <<process_values>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop process_values;
end output_values;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 94 of 193

G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk
operations.

Maintainability

REASON

It is easier for the reader to see, that the complete data set is processed. Using SQL to define the data to be processed
is easier to maintain and typically faster than using conditional processing within the loop.

Since an exit statement is similar to a goto statement, it should be avoided, whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

declare
 cursor c_employees is
 select employee_id,last_name
 from employees;
 r_employee c_employees%rowtype;
begin
 open c_employees;

 <<read_employees>>
 loop
 fetch c_employees into r_employee;
 exit read_employees when c_employees%notfound;
 sys.dbms_output.put_line(r_employee.last_name);
 end loop read_employees;

 close c_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 cursor c_employees is
 select employee_id,last_name
 from employees;
begin
 <<read_employees>>
 for r_employee in c_employees
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop read_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 95 of 193

G-4340: Always use a NUMERIC FOR loop to process a dense array.

Maintainability

REASON

It is easier for the reader to see, that the complete array is processed.

Since an exit statement is similar to a goto statement, it should be avoided, whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 type t_employee_type is varray(10) of employees.employee_id%type;
 t_employees t_employee_type;
 co_himuro constant integer := 118;
 co_livingston constant integer := 177;
 co_min_value constant simple_integer := 1;
 co_increment constant simple_integer := 1;
 i pls_integer;
begin
 t_employees := t_employee_type(co_himuro,co_livingston);
 i := co_min_value;

 <<process_employees>>
 loop
 exit process_employees when i > t_employees.count();
 sys.dbms_output.put_line(t_employees(i));
 i := i + co_increment;
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 type t_employee_type is varray(10) of employees.employee_id%type;
 t_employees t_employee_type;
 co_himuro constant integer := 118;
 co_livingston constant integer := 177;
begin
 t_employees := t_employee_type(co_himuro,co_livingston);

 <<process_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i));
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 96 of 193

G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.

Reliability

REASON

Doing so will not raise a value_error if the array you are looping through is empty. If you want to use
first()..last() you need to check the array for emptiness beforehand to avoid the raise of value_error .

EXAMPLE (BAD)

EXAMPLE (BETTER)

Raise an unitialized collection error if t_employees is not initialized.

EXAMPLE (GOOD)

Raises neither an error nor checking whether the array is empty. t_employees.count() always returns a number
(unless the array is not initialized). If the array is empty count() returns 0 and therefore the loop will not be entered.

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 type t_employee_type is table of employees.employee_id%type;
 t_employees t_employee_type := t_employee_type();
begin
 <<process_employees>>
 for i in t_employees.first()..t_employees.last()
 loop
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 type t_employee_type is table of employees.employee_id%type;
 t_employees t_employee_type := t_employee_type();
begin
 <<process_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 type t_employee_type is table of employees.employee_id%type;
 t_employees t_employee_type := t_employee_type();
begin
 if t_employees is not null then
 <<process_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 end loop process_employees;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 97 of 193

G-4360: Always use a WHILE loop to process a loose array.

Efficiency

REASON

When a loose (also called sparse) array is processed using a numeric for loop we have to check with all iterations
whether the element exist to avoid a no_data_found exception. In addition, the number of iterations is not driven by the
number of elements in the array but by the number of the lowest/highest element. The more gaps we have, the more
superfluous iterations will be done.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare -- raises no_data_found when processing 2nd record
 type t_employee_type is table of employees.employee_id%type;
 t_employees t_employee_type;
 co_rogers constant integer := 134;
 co_matos constant integer := 143;
 co_mcewen constant integer := 158;
 co_index_matos constant integer := 2;
begin
 t_employees := t_employee_type(co_rogers,co_matos,co_mcewen);
 t_employees.delete(co_index_matos);

 if t_employees is not null then
 <<process_employees>>
 for i in 1..t_employees.count()
 loop
 sys.dbms_output.put_line(t_employees(i));
 end loop process_employees;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

declare
 type t_employee_type is table of employees.employee_id%type;
 t_employees t_employee_type;
 co_rogers constant integer := 134;
 co_matos constant integer := 143;
 co_mcewen constant integer := 158;
 co_index_matos constant integer := 2;
 l_index pls_integer;
begin
 t_employees := t_employee_type(co_rogers,co_matos,co_mcewen);
 t_employees.delete(co_index_matos);

 l_index := t_employees.first();

 <<process_employees>>
 while l_index is not null
 loop
 sys.dbms_output.put_line(t_employees(l_index));
 l_index := t_employees.next(l_index);
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 98 of 193

G-4365: Never use unconditional CONTINUE or EXIT in a loop.

Maintainability, Testability

REASON

An unconditional continue is either redundant (a continue as the last statement before the end of the loop) or
causes dead code. An unconditional exit causes no looping and may cause dead code as well. If continue or exit
is needed, it should always have a condition.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

begin
 <<process_employees>>
 loop
 my_package.some_processing();

 continue process_employees;

 my_package.some_further_processing(); -- Dead code
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 co_first_year constant pls_integer := 1900;
begin
 <<process_employees>>
 loop
 my_package.some_processing();

 continue process_employees when extract(year from sysdate) > co_first_year;

 my_package.some_further_processing();
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 99 of 193

G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.

Maintainability

REASON

A numeric for loop as well as a while loop and a cursor for loop have defined loop boundaries. If you are not able to exit
your loop using those loop boundaries, then a basic loop is the right loop to choose.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

declare
 i integer;
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 10;
 co_increment constant simple_integer := 1;
begin
 i := co_min_value;
 <<while_loop>>
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 exit while_loop when i > co_max_value;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in co_min_value..co_max_value
 loop
 null;
 exit for_loop when i = co_max_value;
 end loop for_loop;

 <<process_employees>>
 for r_employee in (
 select last_name
 from employees
)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 null; -- some processing
 exit process_employees;
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 100 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

declare
 i integer;
 co_min_value constant simple_integer := 1;
 co_max_value constant simple_integer := 10;
 co_increment constant simple_integer := 1;
begin
 i := co_min_value;
 <<while_loop>>
 while (i <= co_max_value)
 loop
 i := i + co_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in co_min_value..co_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;

 <<process_employees>>
 for r_employee in (
 select last_name
 from employees
)
 loop
 sys.dbms_output.put_line(r_employee.last_name); -- some processing
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 101 of 193

G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.

Maintainability

REASON

If you need to use an exit statement use its full semantic to make the code easier to understand and maintain. There
is simply no need for an additional if statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 co_first_year constant pls_integer := 1900;
begin
 <<process_employees>>
 loop
 my_package.some_processing();

 if extract(year from sysdate) > co_first_year then
 exit process_employees;
 end if;

 my_package.some_further_processing();
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 co_first_year constant pls_integer := 1900;
begin
 <<process_employees>>
 loop
 my_package.some_processing();

 exit process_employees when extract(year from sysdate) > co_first_year;

 my_package.some_further_processing();
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 102 of 193

G-4380: Try to label your EXIT WHEN statements.

Maintainability

REASON

It's a good alternative for comments, especially for nested loops to name the loop to exit.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

declare
 co_init_loop constant simple_integer := 0;
 co_increment constant simple_integer := 1;
 co_exit_value constant simple_integer := 3;
 co_outer_text constant types_up.short_text_type := 'Outer Loop counter is ';
 co_inner_text constant types_up.short_text_type := ' Inner Loop counter is ';
 l_outerlp pls_integer;
 l_innerlp pls_integer;
begin
 l_outerlp := co_init_loop;
 <<outerloop>>
 loop
 l_innerlp := co_init_loop;
 l_outerlp := nvl(l_outerlp,co_init_loop) + co_increment;
 <<innerloop>>
 loop
 l_innerlp := nvl(l_innerlp,co_init_loop) + co_increment;
 sys.dbms_output.put_line(co_outer_text
 || l_outerlp
 || co_inner_text
 || l_innerlp);

 exit when l_innerlp = co_exit_value;
 end loop innerloop;

 exit when l_innerlp = co_exit_value;
 end loop outerloop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 103 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 co_init_loop constant simple_integer := 0;
 co_increment constant simple_integer := 1;
 co_exit_value constant simple_integer := 3;
 co_outer_text constant types_up.short_text_type := 'Outer Loop counter is ';
 co_inner_text constant types_up.short_text_type := ' Inner Loop counter is ';
 l_outerlp pls_integer;
 l_innerlp pls_integer;
begin
 l_outerlp := co_init_loop;
 <<outerloop>>
 loop
 l_innerlp := co_init_loop;
 l_outerlp := nvl(l_outerlp,co_init_loop) + co_increment;
 <<innerloop>>
 loop
 l_innerlp := nvl(l_innerlp,co_init_loop) + co_increment;
 sys.dbms_output.put_line(co_outer_text
 || l_outerlp
 || co_inner_text
 || l_innerlp);

 exit outerloop when l_innerlp = co_exit_value;
 end loop innerloop;
 end loop outerloop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 104 of 193

G-4385: Never use a cursor for loop to check whether a cursor returns data.

Efficiency

REASON

You might process more data than required, which leads to bad performance.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 l_employee_found boolean := false;
 cursor c_employees is
 select employee_id,last_name
 from employees;
begin
 <<check_employees>>
 for r_employee in c_employees
 loop
 l_employee_found := true;
 end loop check_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 l_employee_found boolean := false;
 cursor c_employees is
 select employee_id,last_name
 from employees;
 r_employee c_employees%rowtype;
begin
 open c_employees;
 fetch c_employees into r_employee;
 l_employee_found := c_employees%found;
 close c_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 105 of 193

G-4390: Avoid use of unreferenced FOR loop indexes.

Efficiency

REASON

If the loop index is used for anything but traffic control inside the loop, this is one of the indicators that a numeric for
loop is being used incorrectly. The actual body of executable statements completely ignores the loop index. When that
is the case, there is a good chance that you do not need the loop at all.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

declare
 l_row pls_integer;
 l_value pls_integer;
 co_lower_bound constant simple_integer := 1;
 co_upper_bound constant simple_integer := 5;
 co_row_incr constant simple_integer := 1;
 co_value_incr constant simple_integer := 10;
 co_delimiter constant types_up.short_text_type := ' ';
 co_first_value constant simple_integer := 100;
begin
 l_row := co_lower_bound;
 l_value := co_first_value;
 <<for_loop>>
 for i in co_lower_bound..co_upper_bound
 loop
 sys.dbms_output.put_line(l_row
 || co_delimiter
 || l_value);
 l_row := l_row + co_row_incr;
 l_value := l_value + co_value_incr;
 end loop for_loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

declare
 co_lower_bound constant simple_integer := 1;
 co_upper_bound constant simple_integer := 5;
 co_value_incr constant simple_integer := 10;
 co_delimiter constant types_up.short_text_type := ' ';
 co_first_value constant simple_integer := 100;
begin
 <<for_loop>>
 for i in co_lower_bound..co_upper_bound
 loop
 sys.dbms_output.put_line(i
 || co_delimiter
 || to_char(co_first_value + i * co_value_incr));
 end loop for_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 106 of 193

G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

Changeability, Maintainability

REASON

Your loop statement uses a hard-coded value for either its upper or lower bounds. This creates a "weak link" in your
program because it assumes that this value will never change. A better practice is to create a named constant (or
function) and reference this named element instead of the hard-coded value.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5
6
7
8

begin
 <<for_loop>>
 for i in 1..5
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 co_lower_bound constant simple_integer := 1;
 co_upper_bound constant simple_integer := 5;
begin
 <<for_loop>>
 for i in co_lower_bound..co_upper_bound
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 107 of 193

Exception Handling

G-5010: Try to use a error/logging framework for your application.

Reliability, Reusability, Testability

We cannot identify logging framework and where it should be applied. Requires further definition regarding
naming of the error/logging framework and its minimal use in PL/SQL code.

Reason

Having a framework to raise/handle/log your errors allows you to easily avoid duplicate application error numbers and
having different error messages for the same type of error.

This kind of framework should include

Logging (different channels like table, mail, file, etc. if needed)

Error Raising

Multilanguage support if needed

Translate Oracle error messages to a user friendly error text

Error repository

Example (bad)

Example (good)

Critical

Unsupported in PL/SQL Cop Validators

1
2
3
4
5
6

begin
 sys.dbms_output.put_line('START');
 -- some processing
 sys.dbms_output.put_line('END');
end;
/

1
2
3
4
5
6
7
8
9

declare
 -- see https://github.com/OraOpenSource/Logger
 l_scope logger_logs.scope%type := 'DEMO';
begin
 logger.log('START',l_scope);
 -- some processing
 logger.log('END',l_scope);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 108 of 193

G-5020: Never handle unnamed exceptions using the error number.

Maintainability

Reason

When literals are used for error numbers the reader needs the error message manual to unterstand what is going on.
Commenting the code or using constants is an option, but it is better to use named exceptions instead, because it
ensures a certain level of consistency which makes maintenance easier.

Example (bad)

Example (good)

Critical

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 co_no_data_found constant integer := -1;
begin
 my_package.some_processing(); -- some code which raises an exception
exception
 when too_many_rows then
 my_package.some_further_processing();
 when others then
 if sqlcode = co_no_data_found then
 null;
 end if;
end;
/

1
2
3
4
5
6
7
8
9

begin
 my_package.some_processing(); -- some code which raises an exception
exception
 when too_many_rows then
 my_package.some_further_processing();
 when no_data_found then
 null; -- handle no_data_found
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 109 of 193

G-5030: Never assign predefined exception names to user defined exceptions.

Reliability, Testability

Reason

This is error-prone because your local declaration overrides the global declaration. While it is technically possible to
use the same names, it causes confusion for others needing to read and maintain this code. Additionally, you will need
to be very careful to use the prefix standard in front of any reference that needs to use Oracle’s default exception
behavior.

Example (bad)

Using the code below, we are not able to handle the no_data_found exception raised by the select statement as we
have overwritten that exception handler. In addition, our exception handler doesn't have an exception number assigned,
which should be raised when the select statement does not find any rows.

Example (good)

Blocker

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 l_dummy dual.dummy%type;
 no_data_found exception;
 co_rownum constant simple_integer := 0;
 co_no_data_found constant types_up.short_text_type := 'no_data_found';
begin
 select dummy
 into l_dummy
 from dual
 where rownum = co_rownum;

 if l_dummy is null then
 raise no_data_found;
 end if;
exception
 when no_data_found then
 sys.dbms_output.put_line(co_no_data_found);
end;
/

Error report -
ORA-01403: no data found
ORA-06512: at line 5
01403. 00000 - "no data found"
*Cause: No data was found from the objects.
*Action: There was no data from the objects which may be due to end of fetch.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 110 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

declare
 l_dummy dual.dummy%type;
 empty_value exception;
 co_rownum constant simple_integer := 0;
 co_empty_value constant types_up.short_text_type := 'empty_value';
 co_no_data_found constant types_up.short_text_type := 'no_data_found';
begin
 select dummy
 into l_dummy
 from dual
 where rownum = co_rownum;

 if l_dummy is null then
 raise empty_value;
 end if;
exception
 when empty_value then
 sys.dbms_output.put_line(co_empty_value);
 when no_data_found then
 sys.dbms_output.put_line(co_no_data_found);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 111 of 193

G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other
specific handlers.

Reliability

Reason

There is not necessarily anything wrong with using when others , but it can cause you to "lose" error information
unless your handler code is relatively sophisticated. Generally, you should use when others to grab any and every error
only after you have thought about your executable section and decided that you are not able to trap any specific
exceptions. If you know, on the other hand, that a certain exception might be raised, include a handler for that error. By
declaring two different exception handlers, the code more clearly states what we expect to have happen and how we
want to handle the errors. That makes it easier to maintain and enhance. We also avoid hard-coding error numbers in
checks against sqlcode .

When using a logging framework like Logger, consider making an exception to this rule and allow a when others even
without other specific handlers, but only if the when others exception handler calls a logging procedure that saves the
error stack (that otherwise is lost) and the last statement of the handler is raise .

Example (bad)

Example (good)

An exception to the rule where when others can be good to log the error and then re-raise it:

Major

1
2
3
4
5
6
7

begin
 my_package.some_processing();
exception
 when others then
 my_package.some_further_processing();
end;
/

1
2
3
4
5
6
7

begin
 my_package.some_processing();
exception
 when dup_val_on_index then
 my_package.some_further_processing();
end;
/

1
2
3
4
5
6
7
8

begin
 my_package.some_processing();
exception
 when others then
 logger.log_error('Unhandled Exception');
 raise;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 112 of 193

G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded
20nnn error number or hard-coded message.

Changeability, Maintainability

Reason

If you are not very organized in the way you allocate, define and use the error numbers between 20999 and 20000
(those reserved by Oracle for its user community), it is very easy to end up with conflicting usages. You should assign
these error numbers to named constants and consolidate all definitions within a single package. When you call
raise_application_error , you should reference these named elements and error message text stored in a table. Use
your own raise procedure in place of explicit calls to raise_application_error . If you are raising a "system" exception
like no_data_found , you must use raise . However, when you want to raise an application-specific error, you use
raise_application_error . If you use the latter, you then have to provide an error number and message. This leads to
unnecessary and damaging hard-coded values. A more fail-safe approach is to provide a predefined raise procedure
that automatically checks the error number and determines the correct way to raise the error.

Example (bad)

Example (good)

Major

1
2
3
4

begin
 raise_application_error(-20501,'Invalid employee_id');
end;
/

1
2
3
4

begin
 err_up.raise(in_error => err.co_invalid_employee_id);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 113 of 193

G-5060: Avoid unhandled exceptions.

Reliability

Reason

This may be your intention, but you should review the code to confirm this behavior.

If you are raising an error in a program, then you are clearly predicting a situation in which that error will occur. You
should consider including a handler in your code for predictable errors, allowing for a graceful and informative failure.
After all, it is much more difficult for an enclosing block to be aware of the various errors you might raise and more
importantly, what should be done in response to the error.

The form that this failure takes does not necessarily need to be an exception. When writing functions, you may well
decide that in the case of certain exceptions, you will want to return a value such as null , rather than allow an
exception to propagate out of the function.

Example (bad)

Example (good)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

create or replace package body department_api is
 function name_by_id(in_id in departments.department_id%type)
 return departments.department_name%type is
 l_department_name departments.department_name%type;
 begin
 select department_name
 into l_department_name
 from departments
 where department_id = in_id;

 return l_department_name;
 end name_by_id;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body department_api is
 function name_by_id(in_id in departments.department_id%type)
 return departments.department_name%type is
 l_department_name departments.department_name%type;
 begin
 select department_name
 into l_department_name
 from departments
 where department_id = in_id;

 return l_department_name;
 exception
 when no_data_found then
 return null;
 when too_many_rows then
 raise;
 end name_by_id;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 114 of 193

G-5070: Avoid using Oracle predefined exceptions.

Reliability

Reason

You have raised an exception whose name was defined by Oracle. While it is possible that you have a good reason for
"using" one of Oracle's predefined exceptions, you should make sure that you would not be better off declaring your
own exception and raising that instead.

If you decide to change the exception you are using, you should apply the same consideration to your own exceptions.
Specifically, do not "re-use" exceptions. You should define a separate exception for each error condition, rather than
use the same exception for different circumstances.

Being as specific as possible with the errors raised will allow developers to check for, and handle, the different kinds of
errors the code might produce.

Example (bad)

Example (good)

Critical

1
2
3
4

begin
 raise no_data_found;
end;
/

1
2
3
4
5
6

declare
 my_exception exception;
begin
 raise my_exception;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 115 of 193

G-5080: Always use FORMAT_ERROR_BACKTRACE when using FORMAT_ERROR_STACK
or SQLERRM.

Maintainability, Testability

Reason

In exception handler sqlerrm and format_error_stack won't tell you the exact line where the error occurred.
format_error_backtrace displays the call stack at the point where an exception was raised, even if the subprogram is
called from an exception handler in an outer scope.

If you use sqlerrm or format_error_stack to log/display error, you should also include format_error_backtrace to
identify the exact location where the exception was raised.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body order_api as
 procedure discount_and_recalculate(
 in_customer_id customer.id%type
 , in_discount customer.discount_percentage%type
)
 begin
 customer_api.apply_discount(in_customer_id, in_discount);
 customer_api.in_customer_id(10293847);
 exception
 when zero_divide then
 null; -- ignore
 when others then
 logging_package.log_error('Error: ' || sqlerrm);
 raise;
 end discount_and_recalculate;
end order_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body order_api as
 procedure discount_and_recalculate(
 in_customer_id customer.id%type
 , in_discount customer.discount_percentage%type
)
 begin
 customer_api.apply_discount(in_customer_id, in_discount);
 customer_api.in_customer_id(10293847);
 exception
 when zero_divide then
 null; -- ignore
 when others then
 logging_package.log_error(
 'Error: ' || sqlerrm || ' - Backtrace: ' || dbms_utility.format_error_backtrace
);
 raise;
 end discount_and_recalculate;
end order_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 116 of 193

Dynamic SQL

G-6010: Always use a character variable to execute dynamic SQL.

Maintainability, Testability

Reason

Having the executed statement in a variable makes it easier to debug your code (e.g. by logging the statement that
failed).

Example (bad)

Example (good)

Major

1
2
3
4
5
6

declare
 l_next_val employees.employee_id%type;
begin
 execute immediate 'select employees_seq.nextval from dual' into l_next_val;
end;
/

1
2
3
4
5
6
7
8

declare
 l_next_val employees.employee_id%type;
 co_sql constant types_up.big_string_type :=
 'select employees_seq.nextval from dual';
begin
 execute immediate co_sql into l_next_val;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 117 of 193

G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML
statements rather than the USING clause.

Maintainability

Reason

When a dynamic insert , update , or delete statement has a returning clause, output bind arguments can go in the
returning into clause or in the using clause.

You should use the returning into clause for values returned from a DML operation. Reserve out and in out bind
variables for dynamic PL/SQL blocks that return values in PL/SQL variables.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body employee_api is
 procedure upd_salary(in_employee_id in employees.employee_id%type
 ,in_increase_pct in types_up.percentage
 ,out_new_salary out employees.salary%type)
 is
 co_sql_stmt constant types_up.big_string_type := '
 update employees set salary = salary + (salary / 100 * :1)
 where employee_id = :2
 returning salary into :3';
 begin
 execute immediate co_sql_stmt
 using in_increase_pct,in_employee_id,out out_new_salary;
 end upd_salary;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api is
 procedure upd_salary(in_employee_id in employees.employee_id%type
 ,in_increase_pct in types_up.percentage
 ,out_new_salary out employees.salary%type)
 is
 co_sql_stmt constant types_up.big_string_type :=
 'update employees set salary = salary + (salary / 100 * :1)
 where employee_id = :2
 returning salary into :3';
 begin
 execute immediate co_sql_stmt
 using in_increase_pct,in_employee_id
 returning into out_new_salary;
 end upd_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 118 of 193

Stored Objects

General

G-7110: Try to use named notation when calling program units.

Changeability, Maintainability

REASON

Named notation makes sure that changes to the signature of the called program unit do not affect your call.

This is not needed for standard functions like (to_char , to_date , nvl , round , etc.) but should be followed for any
other stored object having more than one parameter.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7

declare
 r_employee employees%rowtype;
 co_id constant employees.employee_id%type := 107;
begin
 employee_api.employee_by_id(r_employee,co_id);
end;
/

1
2
3
4
5
6
7

declare
 r_employee employees%rowtype;
 co_id constant employees.employee_id%type := 107;
begin
 employee_api.employee_by_id(out_row => r_employee,in_employee_id => co_id);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 119 of 193

G-7120: Always add the name of the program unit to its end keyword.

Maintainability

REASON

It's a good alternative for comments to indicate the end of program units, especially if they are lengthy or nested.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body employee_api is
 function employee_by_id(in_employee_id in employees.employee_id%type)
 return employees%rowtype is
 r_employee employees%rowtype;
 begin
 select *
 into r_employee
 from employees
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body employee_api is
 function employee_by_id(in_employee_id in employees.employee_id%type)
 return employees%rowtype is
 r_employee employees%rowtype;
 begin
 select *
 into r_employee
 from employees
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end employee_by_id;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 120 of 193

G-7125: Always use CREATE OR REPLACE instead of CREATE alone.

Maintainability

REASON

Using create alone makes your scripts give an error if the program unit already exists, which makes the script not
repeatable. It is good practice to use create or replace to avoid such errors.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create package body employee_api is
 function employee_by_id(in_employee_id in employees.employee_id%type)
 return employees%rowtype is
 r_employee employees%rowtype;
 begin
 select *
 into r_employee
 from employees
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end employee_by_id;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body employee_api is
 function employee_by_id(in_employee_id in employees.employee_id%type)
 return employees%rowtype is
 r_employee employees%rowtype;
 begin
 select *
 into r_employee
 from employees
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end employee_by_id;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 121 of 193

G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program
unit.

Maintainability, Reliability, Testability

REASON

Local procedures and functions offer an excellent way to avoid code redundancy and make your code more readable
(and thus more maintainable). Your local program refers, however, an external data structure, i.e., a variable that is
declared outside of the local program. Thus, it is acting as a global variable inside the program.

This external dependency is hidden, and may cause problems in the future. You should instead add a parameter to the
parameter list of this program and pass the value through the list. This technique makes your program more reusable
and avoids scoping problems, i.e. the program unit is less tied to particular variables in the program. In addition, unit
encapsulation makes maintenance a lot easier and cheaper.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

create or replace package body employee_api is
 procedure calc_salary(in_employee_id in employees.employee_id%type) is
 r_emp employees%rowtype;

 function commission return number is
 l_commission employees.salary%type := 0;
 begin
 if r_emp.commission_pct is not null then
 l_commission := r_emp.salary * r_emp.commission_pct;
 end if;

 return l_commission;
 end commission;
 begin
 select *
 into r_emp
 from employees
 where employee_id = in_employee_id;

 sys.dbms_output.put_line(r_emp.salary + commission());
 exception
 when no_data_found then
 null;
 when too_many_rows then
 null;
 end calc_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 122 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

create or replace package body employee_api is
 procedure calc_salary(in_employee_id in employees.employee_id%type) is
 r_emp employees%rowtype;

 function commission(in_salary in employees.salary%type
 ,in_comm_pct in employees.commission_pct%type)
 return number is
 l_commission employees.salary%type := 0;
 begin
 if in_comm_pct is not null then
 l_commission := in_salary * in_comm_pct;
 end if;

 return l_commission;
 end commission;
 begin
 select *
 into r_emp
 from employees
 where employee_id = in_employee_id;

 sys.dbms_output.put_line(
 r_emp.salary + commission(in_salary => r_emp.salary
 ,in_comm_pct => r_emp.commission_pct)
);
 exception
 when no_data_found then
 null;
 when too_many_rows then
 null;
 end calc_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 123 of 193

G-7140: Always ensure that locally defined procedures or functions are referenced.

Maintainability, Reliability

REASON

This can occur as the result of changes to code over time, but you should make sure that this situation does not reflect
a problem. And you should remove the declaration to avoid maintenance errors in the future.

You should go through your programs and remove any part of your code that is no longer used. This is a relatively
straightforward process for variables and named constants. Simply execute searches for a variable's name in that
variable's scope. If you find that the only place it appears is in its declaration, delete the declaration.

There is never a better time to review all the steps you took, and to understand the reasons you took them, then
immediately upon completion of your program. If you wait, you will find it particularly difficult to remember those parts
of the program that were needed at one point, but were rendered unnecessary in the end.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 procedure my_procedure is
 function my_func return number is
 co_true constant integer := 1;
 begin
 return co_true;
 end my_func;
 begin
 null;
 end my_procedure;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 procedure my_procedure is
 function my_func return number is
 co_true constant integer := 1;
 begin
 return co_true;
 end my_func;
 begin
 sys.dbms_output.put_line(my_func());
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 124 of 193

G-7150: Try to remove unused parameters.

Efficiency, Maintainability

REASON

You should go through your programs and remove any parameter that is no longer used.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

create or replace package body department_api is
 function name_by_id(in_department_id in departments.department_id%type
 ,in_manager_id in departments.manager_id%type)
 return departments.department_name%type is
 l_department_name departments.department_name%type;
 begin
 <<find_department>>
 begin
 select department_name
 into l_department_name
 from departments
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_department_name := null;
 end find_department;

 return l_department_name;
 end name_by_id;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

create or replace package body department_api is
 function name_by_id(in_department_id in departments.department_id%type)
 return departments.department_name%type is
 l_department_name departments.department_name%type;
 begin
 <<find_department>>
 begin
 select department_name
 into l_department_name
 from departments
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_department_name := null;
 end find_department;

 return l_department_name;
 end name_by_id;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 125 of 193

G-7160: Always explicitly state parameter mode.

Maintainability

REASON

By showing the mode of parameters, you help the reader. If you do not specify a parameter mode, the default mode is
in . Explicitly showing the mode indication of all parameters is a more assertive action than simply taking the default
mode. Anyone reviewing the code later will be more confident that you intended the parameter mode to be in , out or
in out .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8
9

create or replace package employee_api is
 procedure upsert(io_id in out employees.id%type
 ,in_first_name employees.first_name%type
 ,in_last_name employees.last_name%type
 ,in_email employees.email%type
 ,in_department_id employees.department_id%type
 ,out_success out pls_integer);
end employee_up;
/

1
2
3
4
5
6
7
8
9

create or replace package employee_api is
 procedure upsert(io_id in out employees.id%type
 ,in_first_name in employees.first_name%type
 ,in_last_name in employees.last_name%type
 ,in_email in employees.email%type
 ,in_department_id in employees.department_id%type
 ,out_success out pls_integer);
end employee_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 126 of 193

G-7170: Avoid using an IN OUT parameter as IN or OUT only.

Efficiency, Maintainability

We cannot determine the usage of an in out parameter in a reliable way, especially when other units are involved
which are maintained in another file.

REASON

Avoid using parameter mode in out unless you actually use the parameter both as input and output. If the code body
only reads from the parameter, use in ; if the code body only assigns to the parameter, use out . If at the beginning of a
project you expect a parameter to be both input and output and therefore choose in out just in case, but later
development shows the parameter actually is only in or out , you should change the parameter mode accordingly.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

create or replace package body employee_up is
 procedure rcv_emp(io_first_name in out employees.first_name%type
 ,io_last_name in out employees.last_name%type
 ,io_email in out employees.email%type
 ,io_phone_number in out employees.phone_number%type
 ,io_hire_date in out employees.hire_date%type
 ,io_job_id in out employees.job_id%type
 ,io_salary in out employees.salary%type
 ,io_commission_pct in out employees.commission_pct%type
 ,io_manager_id in out employees.manager_id%type
 ,io_department_id in out employees.department_id%type
 ,in_wait in integer) is
 l_status pls_integer;
 co_dflt_pipe_name constant string(30 char) := 'MyPipe';
 co_ok constant pls_integer := 1;
 begin
 -- Receive next message and unpack for each column.
 l_status := sys.dbms_pipe.receive_message(pipename => co_dflt_pipe_name
 ,timeout => in_wait);
 if l_status = co_ok then
 sys.dbms_pipe.unpack_message(io_first_name);
 sys.dbms_pipe.unpack_message(io_last_name);
 sys.dbms_pipe.unpack_message(io_email);
 sys.dbms_pipe.unpack_message(io_phone_number);
 sys.dbms_pipe.unpack_message(io_hire_date);
 sys.dbms_pipe.unpack_message(io_job_id);
 sys.dbms_pipe.unpack_message(io_salary);
 sys.dbms_pipe.unpack_message(io_commission_pct);
 sys.dbms_pipe.unpack_message(io_manager_id);
 sys.dbms_pipe.unpack_message(io_department_id);
 end if;
 end rcv_emp;
end employee_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 127 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

create or replace package body employee_up is
 procedure rcv_emp(out_first_name out employees.first_name%type
 ,out_last_name out employees.last_name%type
 ,out_email out employees.email%type
 ,out_phone_number out employees.phone_number%type
 ,out_hire_date out employees.hire_date%type
 ,out_job_id out employees.job_id%type
 ,out_salary out employees.salary%type
 ,out_commission_pct out employees.commission_pct%type
 ,out_manager_id out employees.manager_id%type
 ,out_department_id out employees.department_id%type
 ,in_wait in integer) is
 l_status pls_integer;
 co_dflt_pipe_name constant string(30 char) := 'MyPipe';
 co_ok constant pls_integer := 1;
 begin
 -- Receive next message and unpack for each column.
 l_status := sys.dbms_pipe.receive_message(pipename => co_dflt_pipe_name
 ,timeout => in_wait);
 if l_status = co_ok then
 sys.dbms_pipe.unpack_message(out_first_name);
 sys.dbms_pipe.unpack_message(out_last_name);
 sys.dbms_pipe.unpack_message(out_email);
 sys.dbms_pipe.unpack_message(out_phone_number);
 sys.dbms_pipe.unpack_message(out_hire_date);
 sys.dbms_pipe.unpack_message(out_job_id);
 sys.dbms_pipe.unpack_message(out_salary);
 sys.dbms_pipe.unpack_message(out_commission_pct);
 sys.dbms_pipe.unpack_message(out_manager_id);
 sys.dbms_pipe.unpack_message(out_department_id);
 end if;
 end rcv_emp;
end employee_up;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 128 of 193

Packages

G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same
context.

Efficiency, Maintainability

REASON

The entire package is loaded into memory when the package is called the first time. To optimize memory consumption
and keep load time small packages should be kept small but include components that are used together.

Minor

PL/SQL & SQL Coding Guidelines Version 4.1 Page 129 of 193

G-7220: Always use forward declaration for private functions and procedures.

Changeability

REASON

Having forward declarations allows you to order the functions and procedures of the package in a reasonable way.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

create or replace package department_api is
 procedure del(in_department_id in departments.department_id%type);
end department_api;
/

create or replace package body department_api is
 function does_exist(in_department_id in departments.department_id%type)
 return boolean is
 l_return pls_integer;
 begin
 <<check_row_exists>>
 begin
 select 1
 into l_return
 from departments
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_return := 0;
 end check_row_exists;

 return l_return = 1;
 end does_exist;

 procedure del(in_department_id in departments.department_id%type) is
 begin
 if does_exist(in_department_id) then
 null;
 end if;
 end del;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 130 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

create or replace package department_api is
 procedure del(in_department_id in departments.department_id%type);
end department_api;
/

create or replace package body department_api is
 function does_exist(in_department_id in departments.department_id%type)
 return boolean;

 procedure del(in_department_id in departments.department_id%type) is
 begin
 if does_exist(in_department_id) then
 null;
 end if;
 end del;

 function does_exist(in_department_id in departments.department_id%type)
 return boolean is
 l_return pls_integer;
 begin
 <<check_row_exists>>
 begin
 select 1
 into l_return
 from departments
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_return := 0;
 end check_row_exists;

 return l_return = 1;
 end does_exist;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 131 of 193

G-7230: Avoid declaring global variables public.

Reliability

REASON

You should always declare package-level data (non-constants) inside the package body. You can then define "get and
set" methods (functions and procedures, respectively) in the package specification to provide controlled access to that
data. By doing so you can guarantee data integrity, you can change your data structure implementation, and also track
access to those data structures.

Data structures (scalar variables, collections, cursors) declared in the package specification (not within any specific
program) can be referenced directly by any program running in a session with execute rights to the package.

Instead, declare all package-level data in the package body and provide "get and set" methods - a function to get the
value and a procedure to set the value - in the package specification. Developers then can access the data using these
methods - and will automatically follow all rules you set upon data modification.

For package-level constants, consider whether the constant should be public and usable from other code, or if only
relevant for code within the package. If the latter, declare the constant in the package body. If the former, it is typically
good practice to place the constants in a package specification that only holds constants.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

create or replace package employee_api as
 co_min_increase constant types_up.sal_increase_type := 0.01;
 co_max_increase constant types_up.sal_increase_type := 0.5;
 g_salary_increase types_up.sal_increase_type := co_min_increase;

 procedure set_salary_increase(in_increase in types_up.sal_increase_type);
 function salary_increase return types_up.sal_increase_type;
end employee_api;
/

create or replace package body employee_api as
 procedure set_salary_increase(in_increase in types_up.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase,co_max_increase)
 ,co_min_increase);
 end set_salary_increase;

 function salary_increase return types_up.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 132 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

create or replace package constants_up as
 co_min_increase constant types_up.sal_increase_type := 0.01;
 co_max_increase constant types_up.sal_increase_type := 0.5;
end constants_up;
/

create or replace package employee_api as
 procedure set_salary_increase(in_increase in types_up.sal_increase_type);
 function salary_increase return types_up.sal_increase_type;
end employee_api;
/

create or replace package body employee_api as
 g_salary_increase types_up.sal_increase_type(4,2);

 procedure init;

 procedure set_salary_increase(in_increase in types_up.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase,constants_up.co_max_increase)
 ,constants_up.co_min_increase);
 end set_salary_increase;

 function salary_increase return types_up.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;

 procedure init
 is
 begin
 g_salary_increase := constants_up.co_min_increase;
 end init;
begin
 init();
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 133 of 193

G-7250: Never use RETURN in package initialization block.

Maintainability

REASON

The purpose of the initialization block of a package body is to set initial values of the global variables of the package
(initialize the package state). Although return is syntactically allowed in this block, it makes no sense. If it is the last
keyword of the block, it is superfluous. If it is not the last keyword, then all code after the return is unreachable and
thus dead code.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

create or replace package body employee_api as
 g_salary_increase types_up.sal_increase_type(4,2);

 procedure set_salary_increase(in_increase in types_up.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase,constants_up.max_salary_increase())
 ,constants_up.min_salary_increase());
 end set_salary_increase;

 function salary_increase return types_up.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;

begin
 g_salary_increase := constants_up.min_salary_increase();

 return;

 set_salary_increase(constants_up.min_salary_increase()); -- dead code
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

create or replace package body employee_api as
 g_salary_increase types_up.sal_increase_type(4,2);

 procedure set_salary_increase(in_increase in types_up.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase,constants_up.max_salary_increase())
 ,constants_up.min_salary_increase());
 end set_salary_increase;

 function salary_increase return types_up.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;

begin
 g_salary_increase := constants_up.min_salary_increase();
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 134 of 193

Procedures

G-7310: Avoid standalone procedures – put your procedures in packages.

Maintainability

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is a major advantage
compared to standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5

create or replace procedure my_procedure is
begin
 null;
end my_procedure;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package my_package is
 procedure my_procedure;
end my_package;
/

create or replace package body my_package is
 procedure my_procedure is
 begin
 null;
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 135 of 193

G-7320: Avoid using RETURN statements in a PROCEDURE.

Maintainability, Testability

REASON

Use of the return statement is legal within a procedure in PL/SQL, but it is very similar to a goto , which means you
end up with poorly structured code that is hard to debug and maintain.

A good general rule to follow as you write your PL/SQL programs is "one way in and one way out". In other words, there
should be just one way to enter or call a program, and there should be one way out, one exit path from a program (or
loop) on successful termination. By following this rule, you end up with code that is much easier to trace, debug, and
maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body my_package is
 procedure my_procedure is
 l_idx simple_integer := 1;
 co_modulo constant simple_integer := 7;
 begin
 <<mod7_loop>>
 loop
 if mod(l_idx,co_modulo) = 0 then
 return;
 end if;

 l_idx := l_idx + 1;
 end loop mod7_loop;
 end my_procedure;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

create or replace package body my_package is
 procedure my_procedure is
 l_idx simple_integer := 1;
 co_modulo constant simple_integer := 7;
 begin
 <<mod7_loop>>
 loop
 exit mod7_loop when mod(l_idx,co_modulo) = 0;

 l_idx := l_idx + 1;
 end loop mod7_loop;
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 136 of 193

G-7330: Always assign values to OUT parameters.

Maintainability, Testability

REASON

Marking a parameter for output means that callers will expect its value to be updated with a result from the execution
of the procedure. Failing to update the parameter before the procedure returns is surely an error.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

create or replace package body my_package is
 procedure greet(
 in_name in varchar2
 ,out_greeting out varchar2
) is
 l_message varchar2(100 char);
 begin
 l_message := 'Hello, ' || in_name;
 end greet;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create or replace package body my_package is
 procedure greet(
 in_name in varchar2
 ,out_greeting out varchar2
) is
 begin
 out_greeting := 'Hello, ' || in_name;
 end greet;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 137 of 193

Functions

G-7410: Avoid standalone functions – put your functions in packages.

Maintainability

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is a major advantage
compared to standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

1
2
3
4
5

create or replace function my_function return varchar2 is
begin
 return null;
end my_function;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return varchar2 is
 begin
 return null;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 138 of 193

G-7420: Always make the RETURN statement the last statement of your function.

Maintainability

REASON

The reader expects the return statement to be the last statement of a function.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body my_package is
 function my_function(in_from in pls_integer
 ,in_to in pls_integer) return pls_integer is
 l_ret pls_integer;
 begin
 l_ret := in_from;
 <<for_loop>>
 for i in in_from..in_to
 loop
 l_ret := l_ret + i;
 if i = in_to then
 return l_ret;
 end if;
 end loop for_loop;
 end my_function;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 function my_function(in_from in pls_integer
 ,in_to in pls_integer) return pls_integer is
 l_ret pls_integer;
 begin
 l_ret := in_from;
 <<for_loop>>
 for i in in_from..in_to
 loop
 l_ret := l_ret + i;
 end loop for_loop;
 return l_ret;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 139 of 193

G-7430: Try to use no more than one RETURN statement within a function.

Maintainability, Testability

REASON

A function should have a single point of entry as well as a single exit-point.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 function my_function(in_value in pls_integer) return boolean is
 co_yes constant pls_integer := 1;
 begin
 if in_value = co_yes then
 return true;
 else
 return false;
 end if;
 end my_function;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 function my_function(in_value in pls_integer) return boolean is
 co_yes constant pls_integer := 1;
 l_ret boolean;
 begin
 if in_value = co_yes then
 l_ret := true;
 else
 l_ret := false;
 end if;

 return l_ret;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7
8

create or replace package body my_package is
 function my_function(in_value in pls_integer) return boolean is
 co_yes constant pls_integer := 1;
 begin
 return in_value = co_yes;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 140 of 193

G-7440: Never use OUT parameters to return values from a function.

Reusability

REASON

A function should return all its data through the return clause. Having an out parameter prohibits usage of a function
within SQL statements.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8

create or replace package body my_package is
 function my_function(out_date out date) return boolean is
 begin
 out_date := sysdate;
 return true;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return date is
 begin
 return sysdate;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 141 of 193

G-7450: Never return a NULL value from a BOOLEAN function.

Reliability, Testability

REASON

If a boolean function returns null , the caller has do deal with it. This makes the usage cumbersome and more error-
prone.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return boolean is
 begin
 return null;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return boolean is
 begin
 return true;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 142 of 193

G-7460: Try to define your packaged/standalone function deterministic if appropriate.

Efficiency

REASON

A deterministic function (always return same result for identical parameters) which is defined to be deterministic will
be executed once per different parameter within a SQL statement whereas if the function is not defined to be
deterministic it is executed once per result row.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5

create or replace package department_api is
 function name_by_id(in_department_id in departments.department_id%type)
 return departments.department_name%type;
end department_api;
/

1
2
3
4
5
6

create or replace package department_api is
 function name_by_id(in_department_id in departments.department_id%type)
 return departments.department_name%type
 deterministic;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 143 of 193

Oracle Supplied Packages

G-7510: Always prefix Oracle supplied packages with owner schema name.

Security

REASON

The signature of Oracle-supplied packages is well known and therefore it is quite easy to provide packages with the
same name as those from Oracle doing something completely different without you noticing it.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6

declare
 co_hello_world constant string(30 char) := 'Hello World';
begin
 dbms_output.put_line(co_hello_world);
end;
/

1
2
3
4
5
6

declare
 co_hello_world constant string(30 char) := 'Hello World';
begin
 sys.dbms_output.put_line(co_hello_world);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 144 of 193

Object Types

There are no object type-specific recommendations to be defined at the time of writing.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 145 of 193

Triggers

G-7710: Avoid cascading triggers.

Maintainability, Testability

REASON

Having triggers that act on other tables in a way that causes triggers on that table to fire lead to obscure behavior.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

create or replace trigger dept_br_u
before update on departments for each row
begin
 insert into departments_hist (
 department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,:old.manager_id
 ,:old.location_id
 ,sysdate);
end;
/
create or replace trigger dept_hist_br_i
before insert on departments_hist for each row
begin
 insert into departments_log (
 department_id
 ,department_name
 ,modification_date)
 values (:new.department_id
 ,:new.department_name
 ,sysdate);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 146 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

create or replace trigger dept_br_u
before update on departments for each row
begin
 insert into departments_hist (
 department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,:old.manager_id
 ,:old.location_id
 ,sysdate);

 insert into departments_log (
 department_id
 ,department_name
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,sysdate);

end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 147 of 193

G-7720: Never use multiple UPDATE OF in trigger event clause.

Maintainability, Reliability, Testability

REASON

A DML trigger can have multiple triggering events separated by or like before insert or delete or update of
some_column . If you have multiple update of separated by or , only one of them (the last one) is actually used and
you get no error message, so you have a bug waiting to happen. Instead you always should use a single update of
with all columns comma-separated, or an update without of if you wish all columns.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Blocker

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

create or replace trigger dept_br_u
before update of department_id or update of department_name
on departments for each row
begin
 -- will only fire on updates of department_name
 insert into departments_log (
 department_id
 ,department_name
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,sysdate);
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace trigger dept_br_u
before update of department_id,department_name
on departments for each row
begin
 insert into departments_log (
 department_id
 ,department_name
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,sysdate);
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 148 of 193

G-7730: Avoid multiple DML events per trigger.

Maintainability, Testability

REASON

Rather than a single trigger handling multiple DML events with separated blocks of if inserting , if updating and
if deleting , modularity by individual triggers per DML event helps maintaining and testing the code. If most of the
code is common for either DML event (only small pieces of code are individual) consider an exception to the rule and
allow if inserting , if updating and if deleting blocks, or alternatively gather the common code in a procedure
and let individual triggers handle the individual pieces of code plus call the procedure with the common code.

If the trigger makes assignment to a primary key and there are child tables with a foreign key referring to this primary
key, the database can make undesirable table locks. If such is the case, you should always use individual triggers. See
G-7740 for details.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace trigger dept_br_iu
before insert or update
on departments for each row
begin
 if inserting then
 :new.created_date := sysdate;
 end if;
 if updating then
 :new.changed_date := sysdate;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace trigger dept_br_i
before insert
on departments for each row
begin
 :new.created_date := sysdate;
end;
/

create or replace trigger dept_br_u
before update
on departments for each row
begin
 :new.changed_date := sysdate;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 149 of 193

file:///4-language-usage/7-stored-objects/7-triggers/g-7740

G-7740: Never handle multiple DML events per trigger if primary key is assigned in trigger.

Efficiency, Reliability

We cannot identify what the primary key column(s) are to check if assignment to a primary key is taking place in
the trigger.

REASON

If a trigger makes assignment to the primary key anywhere in the trigger code, that causes the session firing the trigger
to take a lock on any child tables with a foreign key to this primary key. Even if the assignment is in for example an if
inserting block and the trigger is fired by an update statement, such locks still happen unnecessarily. The issue is
avoided by having one trigger for the insert containing the primary key assignment, and another trigger for the update.
Or even better by handling the insert assignment as ´default on null´ clauses, so that only an on update trigger is
needed.

This locking of child tables behaviour goes for simple DML triggers as well as compound DML triggers where
assignments to primary keys take place. It is not relevant for instead-of triggers on views, as it is not possible to assign
:new values and therefore no locks on child tables are needed.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace trigger dept_br_iu
before insert or update
on departments for each row
begin
 if inserting then
 :new.department_id := department_seq.nextval;
 :new.created_date := sysdate;
 end if;
 if updating then
 :new.changed_date := sysdate;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 150 of 193

EXAMPLE (BEST)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace trigger dept_br_i
before insert
on departments for each row
begin
 :new.department_id := department_seq.nextval;
 :new.created_date := sysdate;
end;
/

create or replace trigger dept_br_u
before update
on departments for each row
begin
 :new.changed_date := sysdate;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

alter table department modify department_id default on null department_seq.nextval;
alter table department modify created_date default on null sysdate;

create or replace trigger dept_br_u
before update
on departments for each row
begin
 :new.changed_date := sysdate;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 151 of 193

Sequences

G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

Efficiency, Maintainability

REASON

Since Oracle 11g it is no longer needed to use a select statement to read a sequence (which would imply a context
switch).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

1
2
3
4
5
6
7
8

declare
 l_sequence_number employees.employee_id%type;
begin
 select employees_seq.nextval
 into l_sequence_number
 from dual;
end;
/

1
2
3
4
5
6

declare
 l_sequence_number employees.employee_id%type;
begin
 l_sequence_number := employees_seq.nextval;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 152 of 193

SQL Macros

G-7910: Never use DML within a SQL macro.

Reliability, Testability

RESTRICTION

Oracle Database 21c (19c from version 19.7 for table macros alone)

REASON

Doing DML (except for select) within a SQL macro can lead to disastrous side effects from calling the macro in a SQL
query.

Logging macro calls via a call to a procedure that does DML in an autonomous transaction can be an exception to the
rule.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace function row_generator (
 num_rows_in in number(32,0)
)
 return varchar2 sql_macro as
begin
 insert into function_calls(name, called_at, parameter_value)
 values ($$PLSQL_UNIT, current_timestamp, num_rows_in);
 commit;

 return 'select level as row_sequence from dual connect by level <= num_rows_in';
end row_generator;
/

1
2
3
4
5
6
7
8

create or replace function row_generator (
 num_rows_in in number(32,0)
)
 return varchar2 sql_macro as
begin
 return 'select level as row_sequence from dual connect by level <= num_rows_in';
end row_generator;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 153 of 193

Patterns

Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.

Efficiency

REASON

If you do a select count(*) all rows will be read according to the where clause, even if only the availability of data is
of interest. For this we have a big performance overhead. If we do a select count(*) ... where rownum = 1 there is
also a overhead as there will be two communications between the PL/SQL and the SQL engine. See the following
example for a better solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

declare
 l_count pls_integer;
 co_zero constant simple_integer := 0;
 co_salary constant employees.salary%type := 5000;
begin
 select count(*)
 into l_count
 from employees
 where salary < co_salary;
 if l_count > co_zero then
 <<emp_loop>>
 for r_emp in (
 select employee_id
 from employees
)
 loop
 if r_emp.salary < co_salary then
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 end if;
 end loop emp_loop;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 154 of 193

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

declare
 co_salary constant employees.salary%type := 5000;
begin
 <<emp_loop>>
 for r_emp in (
 select e1.employee_id
 from employees e1
 where exists(
 select e2.salary
 from employees e2
 where e2.salary < co_salary
)
)
 loop
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 end loop emp_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 155 of 193

G-8120: Never check existence of a row to decide whether to create it or not.

Efficiency, Reliability

REASON

The result of an existence check is a snapshot of the current situation. You never know whether in the time between the
check and the (insert) action someone else has decided to create a row with the values you checked. Therefore, you
should only rely on constraints when it comes to prevention of duplicate records.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body department_api is
 procedure ins(in_r_department in departments%rowtype) is
 l_count pls_integer;
 begin
 select count(*)
 into l_count
 from departments
 where department_id = in_r_department.department_id;

 if l_count = 0 then
 insert into departments
 values in_r_department;
 end if;
 end ins;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

create or replace package body department_api is
 procedure ins(in_r_department in departments%rowtype) is
 begin
 insert into departments
 values in_r_department;
 exception
 when dup_val_on_index then
 null; -- handle exception
 end ins;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 156 of 193

Access objects of foreign application schemas

G-8210: Always use synonyms when accessing objects of another application schema.

Changeability, Maintainability

REASON

If a connection is needed to a table that is placed in a foreign schema, using synonyms is a good choice. If there are
structural changes to that table (e.g. the table name changes or the table changes into another schema) only the
synonym has to be changed no changes to the package are needed (single point of change). If you only have read
access for a table inside another schema, or there is another reason that does not allow you to change data in this
table, you can switch the synonym to a table in your own schema. This is also good practice for testers working on test
systems.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 l_product_name oe.products.product_name%type;
 co_price constant oe.products@list_price%type := 1000;
begin
 select p.product_name
 into l_product_name
 from oe.products p
 where list_price > co_price;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create synonym oe_products for oe.products;

declare
 l_product_name oe_products.product_name%type;
 co_price constant oe_products.list_price%type := 1000;
begin
 select p.product_name
 into l_product_name
 from oe_products p
 where list_price > co_price;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 157 of 193

Validating input parameter size

G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration
section of program unit.

Maintainability, Reliability, Reusability, Testability

REASON

This technique raises an error (value_error) which may not be handled in the called program unit. This is the right
way to do it, as the error is not within this unit but when calling it, so the caller should handle the error.

EXAMPLE (BAD)

EXAMPLE (GOOD)

The exception should be handled where the function is called, like this:

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body department_api is
 function dept_by_name(in_dept_name in departments.department_name%type)
 return departments%rowtype is
 l_return departments%rowtype;
 begin
 if in_dept_name is null or length(in_dept_name) > 20 then
 raise err.e_param_to_large;
 end if;
 -- get the department by name
 select *
 from departments
 where department_name = in_dept_name;

 return l_return;
 end dept_by_name;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body department_api is
 function dept_by_name(in_dept_name in departments.department_name%type)
 return departments%rowtype is
 l_dept_name departments.department_name%type not null := in_dept_name;
 l_return departments%rowtype;
 begin
 -- get the department by name
 select *
 from departments
 where department_name = l_dept_name;

 return l_return;
 end dept_by_name;
end department_api;
/

1
2
3
4
5

...
 r_department := department_api.dept_by_name('Far to long name of a department');
...
exception
 when value_error then ...

PL/SQL & SQL Coding Guidelines Version 4.1 Page 158 of 193

Ensure single execution at a time of a program unit

G-8410: Always use application locks to ensure a program unit is only running once at a given time.

Efficiency, Reliability

We cannot identify where an application lock would make sense. Algorithms to detect wrong, missing and right
usages of this pattern are virtually impossible to implement without understanding the context.

REASON

This technique allows us to have locks across transactions as well as a proven way to clean up at the end of the
session.

The alternative using a table where a “Lock-Row” is stored has the disadvantage that in case of an error a proper
cleanup has to be done to “unlock” the program unit.

EXAMPLE (BAD)

Minor

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

-- Bad
/* Example */
create or replace package body lock_up is
 -- manage locks in a dedicated table created as follows:
 -- CREATE TABLE app_locks (
 -- lock_name VARCHAR2(128 CHAR) NOT NULL primary key
 --);

 procedure request_lock(in_lock_name in varchar2) is
 begin
 -- raises dup_val_on_index
 insert into app_locks (lock_name) values (in_lock_name);
 end request_lock;

 procedure release_lock(in_lock_name in varchar2) is
 begin
 delete from app_locks where lock_name = in_lock_name;
 end release_lock;
end lock_up;
/

/* Call bad example */
declare
 co_lock_name constant varchar2(30 char) := 'APPLICATION_LOCK';
begin
 lock_up.request_lock(in_lock_name => co_lock_name);
 -- processing
 lock_up.release_lock(in_lock_name => co_lock_name);
exception
 when others then
 -- log error
 lock_up.release_lock(in_lock_name => co_lock_name);
 raise;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 159 of 193

EXAMPLE (GOOD)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/* Example */
create or replace package body lock_up is
 function request_lock(
 in_lock_name in varchar2
 ,in_release_on_commit in boolean := false)
 return varchar2 is
 l_lock_handle varchar2(128 char);
 begin
 sys.dbms_lock.allocate_unique(
 lockname => in_lock_name
 ,lockhandle => l_lock_handle
 ,expiration_secs => constants_up.co_one_week
);
 if sys.dbms_lock.request(
 lockhandle => l_lock_handle
 ,lockmode => sys.dbms_lock.x_mode
 ,timeout => sys.dbms_lock.maxwait
 ,release_on_commit => coalesce(in_release_on_commit,false)
) > 0
 then
 raise err.e_lock_request_failed;
 end if;
 return l_lock_handle;
 end request_lock;

 procedure release_lock(in_lock_handle in varchar2) is
 begin
 if sys.dbms_lock.release(lockhandle => in_lock_handle) > 0 then
 raise err.e_lock_request_failed;
 end if;
 end release_lock;
end lock_up;
/

/* Call good example */
declare
 l_handle varchar2(128 char);
 co_lock_name constant varchar2(30 char) := 'APPLICATION_LOCK';
begin
 l_handle := lock_up.request_lock(in_lock_name => co_lock_name);
 -- processing
 lock_up.release_lock(in_lock_handle => l_handle);
exception
 when others then
 -- log error
 lock_up.release_lock(in_lock_handle => l_handle);
 raise;
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 160 of 193

Use dbms_application_info package to follow progress of a process

G-8510: Always use dbms_application_info to track program process transiently.

Efficiency, Reliability

We cannot know where the use of dbms_application_info is sensible. Algorithms to detect wrong, missing and
right usages of this pattern are virtually impossible to implement without understanding the context.

REASON

This technique allows us to view progress of a process without having to persistently write log data in either a table or a
file. The information is accessible through the v$session view.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Unsupported in PL/SQL Cop Validators

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body employee_api is
 procedure process_emps is
 begin
 <<employees>>
 for emp_rec in (
 select employee_id
 from employees
 order by employee_id
)
 loop
 null; -- some processing
 end loop employees;
 end process_emps;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body employee_api is
 procedure process_emps is
 begin
 sys.dbms_application_info.set_module(module_name => $$plsql_unit
 ,action_name => 'Init');
 <<employees>>
 for emp_rec in (
 select employee_id
 from employees
 order by employee_id
)
 loop
 sys.dbms_application_info.set_action('Processing ' || emp_rec.employee_id);
 end loop employees;
 end process_emps;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 161 of 193

Function Usage

G-9010: Always use a format model in string to date/time conversion functions.

Changeability, Maintainability, Reliability, Security, Testability

Reason

Converting from strings to date or timestamp datatypes (using to_date , to_timestamp , to_timestamp_tz or cast
to any of those datatypes) in practice always expects a fixed format (unlike converting to strings that can be fixed as
well as allow the session to decide). Therefore it is a bad idea to allow this conversion to rely on the session NLS
settings (nls_date_format , nls_timestamp_format and nls_timestamp_tz_format) as this makes the code
vulnerable to changes in session and/or server configuration. It is even possible to utilize session nls_date_format
for SQL injection if you use dynamic SQL.

Using an explicit format model for string to date or timestamp conversion avoids this inappropriate dependability on
configurable NLS parameters.

Example (bad)

Example (good)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str)
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str,'FXYYYY-MM-DD')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 162 of 193

G-9020: Try to use a format model and NLS_NUMERIC_CHARACTERS in string to number
conversion functions.

Changeability, Maintainability, Reliability, Security, Testability

Reason

Converting from strings to numeric datatypes (using to_number , to_binary_double , to_binary_float or cast to
any of those datatypes) rely on session NLS settings for nls_numeric_characters . Typically the input string is
expected to have a given decimal- and group-separator, so it is best practice to specify nls_numeric_characters in
the function call. However, this requires also setting a format model, which is a good idea but can require a very large
format model with many 9's if you do not know the maximum length of the string.

To avoid an inappropriate dependability on configurable NLS parameters, try to use both format model and
nls_numeric_characters in the conversion function call. The exceptions can be if the input is known to always be
integer with no decimal- or group-separator, or if you do not know the maximum number of digits and have control over
the session nls_numeric_characters parameter.

Example (bad)

Example (good)

Major

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_salary(in_employee_id in employees.employee_id%type
 ,in_salary in varchar2) is
 begin
 update employees
 set salary = to_number(in_salary)
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

 1
 2
 3
 4
 5
 6

 7
 8
 9
10

create package body employee_api is
 procedure set_salary(in_employee_id in employees.employee_id%type
 ,in_salary in varchar2) is
 begin
 update employees
 set salary =

to_number(in_salary,'99999999999999999999.99999',q'[nls_numeric_characters='.,']')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 163 of 193

G-9030: Try to define a default value on conversion errors.

Maintainability, Reliability, Testability

Restriction

Oracle Database 12c Release 2

Reason

When converting from strings to other datatypes using a conversion function that supports the default ... on
conversion error clause, it is a good idea to use this clause to avoid getting an error raised on bad input. The
exception can be when you explicitly want an error to be raised to catch and process it in a later exception handler.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str,'YYYY-MM-DD')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

 1
 2
 3
 4
 5
 6

 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str default null on conversion error,'YYYY-MM-

DD')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 164 of 193

G-9040: Try using FX in string to date/time conversion format model to avoid fuzzy
conversion.

Reliability, Testability

Reason

The default string-to-date conversion rules allow fuzzy conversion when converting from strings to date or timestamp
datatypes (using to_date , to_timestamp , to_timestamp_tz or cast to any of those datatypes). For example you can
omit punctuation characters, use any non-alphanumeric character for punctuation, use month name instead of
number, or various other rules.

In practice you almost always expect a truly fixed format and want the database to enforce the format model and raise
an error if the data does not match the format model. This you can achieve by adding the format modifier FX (format
exact).

The exception to this rule can be if you are converting textual input typed by a user, in which case the fuzzy conversion
may be what you want.

Example (bad)

Example (good)

Minor

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str,'YYYY-MM-DD')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create package body employee_api is
 procedure set_dob(in_employee_id in employees.employee_id%type
 ,in_dob_str in varchar2) is
 begin
 update employees
 set date_of_birth = to_date(in_dob_str,'FXYYYY-MM-DD')
 where employee_id = in_employee_id;
 end set_dob;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 165 of 193

https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Format-Models.html#GUID-5B755E80-3CB2-4901-BBCF-F0FC764E0BB5

Complexity Analysis

Using software metrics like complexity analysis will guide you towards maintainable and testable pieces of code by
reducing the complexity and splitting the code into smaller chunks.

Halstead Metrics

Calculation

First, we need to compute the following numbers, given the program:

 = the number of distinct operators

 = the number of distinct operands

 = the total number of operators

 = the total number of operands

From these numbers, five measures can be calculated:

Program length:

Program vocabulary:

Volume:

Difficulty:

Effort:

The difficulty measure
 is related to the difficulty of the program to write or understand, e.g. when doing code review.

The volume measure
 describes the size of the implementation of an algorithm.

McCabe's Cyclomatic Complexity

Description

Cyclomatic complexity (or conditional complexity) is a software metric used to measure the complexity of a program. It
directly measures the number of linearly independent paths through a program's source code.

Cyclomatic complexity is computed using the control flow graph of the program: the nodes of the graph correspond to
indivisible groups of commands of a program, and a directed edge connects two nodes if the second command might
be executed immediately after the first command. Cyclomatic complexity may also be applied to individual functions,
modules, methods or classes within a program.

n1

n2

N1

N2

N = N1 + N2

n = n1 + n2

V = N ⋅ log2n

D = ⋅n1

2
N2

n2

E = D ⋅ V

D

V

PL/SQL & SQL Coding Guidelines Version 4.1 Page 166 of 193

The cyclomatic complexity of a section of source code is the count of the number of linearly independent paths
through the source code. For instance, if the source code contains no decision points, such as if statements or for
loops, the complexity would be 1, since there is only a single path through the code. If the code has a single if
statement containing a single condition there would be two paths through the code, one path where the if statement
is evaluated as true and one path where the if statement is evaluated as false .

Calculation

Mathematically, the cyclomatic complexity of a structured program is defined with reference to a directed graph
containing the basic blocks of the program, with an edge between two basic blocks if control may pass from the first to
the second (the control flow graph of the program). The complexity is then defined as:

where

 = cyclomatic complexity

 = the number of edges of the graph

 = the number of nodes of the graph

 = the number of connected components.

Take, for example, a control flow graph of a simple program. The program begins executing at the
red node, then enters a loop (group of three nodes immediately below the red node). On exiting the
loop, there is a conditional statement (group below the loop), and finally the program exits at the
blue node. For this graph,

,
 and
, so the cyclomatic complexity of the program is

.

For a single program (or subroutine or method), P is always equal to 1. Cyclomatic complexity may, however, be applied
to several such programs or subprograms at the same time (e.g., to all of the methods in a class), and in these cases P
will be equal to the number of programs in question, as each subprogram will appear as a disconnected subset of the
graph.

It can be shown that the cyclomatic complexity of any structured program with only one entrance point and one exit
point is equal to the number of decision points (i.e., if statements or conditional loops) contained in that program plus
one.

M = E − N + 2P

M

E

N

P

E = 9
N = 8
P = 1

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

begin
 for i in 1..3
 loop
 dbms_output.put_line('in loop');
 end loop;
 --
 if 1 = 1 then
 dbms_output.put_line('yes');
 end if;
 --
 dbms_output.put_line('end');
end;
/

PL/SQL & SQL Coding Guidelines Version 4.1 Page 167 of 193

Cyclomatic complexity may be extended to a program with multiple exit points; in this case it is equal to:

Where

 is the number of decision points in the program, and

 is the number of exit points.

π = s + 2

π

s

PL/SQL & SQL Coding Guidelines Version 4.1 Page 168 of 193

Code Reviews

Code reviews check the results of software engineering. According to IEEE-Norm 729, a review is a more or less
planned and structured analysis and evaluation process. Here we distinguish between code review and architect
review.

To perform a code review means that after or during the development one or more reviewer proof-reads the code to
find potential errors, potential areas for simplification, or test cases. A code review is a very good opportunity to save
costs by fixing issues before the testing phase.

What can a code-review be good for?

Code quality

Code clarity and maintainability

Quality of the overall architecture

Quality of the documentation

Quality of the interface specification

For an effective review, the following factors must be considered:

Definition of clear goals.

Choice of a suitable person with constructive critical faculties.

Psychological aspects.

Selection of the right review techniques.

Support of the review process from the management.

Existence of a culture of learning and process optimization.

Requirements for the reviewer:

He must not be the owner of the code.

Code reviews may be unpleasant for the developer, as he could fear that his code will be criticized. If the critic is
not considerate, the code writer will build up rejection and resistance against code reviews.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 169 of 193

Tool Support

db* CODECOP for SQL Developer

Introduction

db* CODECOP for SQL Developer is a free extension to check an editor content for compliance violations of this coding
guideline. The extension may be parameterized to your preferred set of rules and allows checking this set against a
program unit.

db* CODECOP calculates metrics per PL/SQL unit, such as:

McCabe’s cyclomatic complexity

Halstead’s volume

The maintainability index

Lines

Commands (SQL*Plus and SQL)

Statements (within a PL/SQL unit)

etc.

And aggregates them on file level.

The results are presented in an additional tabbed panel. One tab shows all guideline violations to quickly navigate to
the corresponding code position. The other tab contains a full HTML report, which also may be opened in your external
browser.

Examples

Open an Oracle PL/SQL or SQL script in a SQL Developer editor and press Ctrl-Shift-C to check your code against the
Trivadis PL/SQL & SQL guidelines.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 170 of 193

https://github.com/Trivadis/plsql-cop-sqldev

Navigate through the issues using the cursor keys to highlight the related code section in the linked editor.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 171 of 193

Dock the db* CODECOP output window on your favorite position within SQL Developer and click on the report tab to
reveal some additional metrics. Open the report in an external browser to print or save the report.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 172 of 193

PL/SQL & SQL Coding Guidelines Version 4.1 Page 173 of 193

db* CODECOP for SonarQube

Introduction

db* CODECOP for SonarQube is a plugin for SonarQube. The plugin analyses SQL and PL/SQL code and calculates
various metrics and checks the code for compliance of this coding guideline.

A static code analysis is typically initiated as part of an continuous integration setup, e.g. at the end of a Jenkins or
Hudson build job. SonarQube stores the result of the analysis in a relational database. Supported are PostgreSQL,
Microsoft SQL Server and Oracle Database. For evaluation purposes, the embedded H2 database can also be used.

Since every analysis is stored as a snapshot in the SonarQube repository the improvement or the decrease of the code
quality may be monitored very well. Use SonarQube and the db* CODECOP plugin if you care about your PL/SQL code
quality.

Examples

Run Code Analysis via SonarScanner

You start an analysis from the command line as follows (see docs for more information):

Here's an excerpt of the output:

1 sonar-scanner -Dsonar.projectKey="sample"

PL/SQL & SQL Coding Guidelines Version 4.1 Page 174 of 193

https://github.com/Trivadis/plsql-cop-sonar
http://www.sonarqube.org/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/

At the end of the run an URL to the scanner result is provided.

Run Code Analyis with CI Environments

You can call the SonarScanner also from Gradle, .NET projects, Maven, Ant, Jenkins, etc. Whichever method you use, in
the end the analysis report will be uploaded to SonarQube.

See SonarScanner for more information.

View Code Analysis Result in SonarQube

Here are the results of the previous analysis.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35

INFO: Scanner configuration file: /usr/local/opt/sonar-scanner/conf/sonar-scanner.properties
INFO: Project root configuration file: NONE
INFO: SonarQube Scanner 4.1.0.1829
...
INFO: Project configuration:
INFO: 115 files indexed
INFO: Quality profile for plsql: db* CODECOP
INFO: ------------- Run sensors on module sample
INFO: JavaScript/TypeScript frontend is enabled
INFO: Define db* CODECOP PlugIn (Secondary)
INFO: Load metrics repository
INFO: Load metrics repository (done) | time=36ms
INFO: PlSQL COP Sensor initializing
INFO: Instantiate class: com.trivadis.sonar.plugin.TrivadisGuidelines3ValidatorConfig
INFO: Sensor CSS Rules [cssfamily]
INFO: No CSS, PHP, HTML or VueJS files are found in the project. CSS analysis is skipped.
INFO: Sensor CSS Rules [cssfamily] (done) | time=1ms
INFO: Sensor PL/SQL Sensor [plsql]
INFO: 115 source files to be analyzed
INFO: Load project repositories
INFO: Load project repositories (done) | time=10ms
...
INFO: Analysis report generated in 149ms, dir size=603 KB
INFO: Analysis report compressed in 1101ms, zip size=264 KB
INFO: Analysis report uploaded in 1858ms
INFO: ANALYSIS SUCCESSFUL, you can browse http://localhost:9000/dashboard?id=sample
INFO: Note that you will be able to access the updated dashboard once the server has processed

the submitted analysis report
INFO: More about the report processing at http://localhost:9000/api/ce/task?

id=AXiSv3IJVMRTx5sCSVMo
INFO: Analysis total time: 27.088 s
INFO: --
INFO: EXECUTION SUCCESS
INFO: --
INFO: Total time: 28.961s
INFO: Final Memory: 40M/144M
INFO: --

PL/SQL & SQL Coding Guidelines Version 4.1 Page 175 of 193

https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/

Under Issues the following Blocker are shown:

PL/SQL & SQL Coding Guidelines Version 4.1 Page 176 of 193

By clicking on the reddish box you can drill down to the source code.

When clicking on Why is this an issue? the complete rule is shown in similar way as in these guidelines.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 177 of 193

See SonarQube documentation for more information.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 178 of 193

https://docs.sonarqube.org/latest/

db* CODECOP Command Line

Introduction

Trivadis db* CODECOP is a command line utility to check Oracle SQL*Plus files for compliance violations of this coding
guideline.

Furthermore McCabe’s cyclomatic complexity, Halstead’s volume, the maintainability index and some other software
metrics are calculated for each PL/SQL unit and aggregated on file level.

The code checking results are stored in XML, HTML and Excel files for further processing.

To get the most out of this command line utility you should make it part of your Continuous Integration environment by
using the db* CODECOP for SonarQube plugin. This way you may control the quality of your code base over time.

Have also a look at db* CODECOP for SQL Developer if you are interested to check the code quality of PL/SQL code
within SQL Developer. It’s a free extension.

db* CODECOP supports custom validators. We provide some example validators in this GitHub repository. You may use
these validators as is or amend/extend them to suit your needs.

Examples

Here are some screen shot taken from an of an HTML report based on the samples provided with db* CODECOP.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 179 of 193

https://github.com/Trivadis/plsql-cop-cli
https://github.com/Trivadis/plsql-cop-sonar
https://github.com/Trivadis/plsql-cop-sqldev
https://github.com/Trivadis/plsql-cop-validators

PL/SQL & SQL Coding Guidelines Version 4.1 Page 180 of 193

These HTML and Excel reports have been created by db* CODECOP and are based on a simple set of good and bad
example files distributed with db* CODECOP.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 181 of 193

https://trivadis.github.io/plsql-cop-cli/tvdcc_report.html
https://trivadis.github.io/plsql-cop-cli/tvdcc_report.xlsx

db* CODECOP Validators

db* CODECOP supports custom validators. A validator must implement the PLSQLCopValidator Java interface and has
to be a direct or indirect descendant of the PLSQLValidator class. Such a class can be used in the command line utility
and the SQL Developer extension.

For SonarQube a ValidationConfig is required. A config defines the validator with its rules and quality profile for
SonarQube. See GLPValidatorConfig. The referenced XML files are generated based on the validator and the optional
sample guidelines.

You may use these validators as is or amend/extend them to suit your needs.

Provided Validators

The db* CODECOP Validators project provides the following custom validators in the package
com.trivadis.tvdcc.validators :

Class Description

TrivadisPlsqlNaming Checks Naming Conventions of the Trivadis PL/SQL & SQL Coding Guidelines

GLP Checks naming of global and local variables and parameters

SQLInjection Looks for SQL injection vulnerabilities, e.g. unasserted parameters in dynamic SQL

Hint Looks for unknown hints and invalid table references

OverrideTrivadisGuidelines Extends TrivadisGuidelines3 and overrides check for G-1050.

TrivadisGuidelines3Plus Combines the validators TrivadisPlsqlNaming, SQLInjection and OverrideTrivadisGuidelines.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 182 of 193

https://github.com/Trivadis/plsql-cop-validators/tree/main/src/main/java/com/trivadis/sonar/plugin/GLPValidatorConfig.java
https://github.com/Trivadis/plsql-cop-validators/tree/main/src/main/resources/GLP/sample
https://github.com/Trivadis/plsql-cop-validators
https://trivadis.github.io/plsql-and-sql-coding-guidelines/2-naming-conventions/naming-conventions/#naming-conventions-for-plsql
https://trivadis.github.io/plsql-and-sql-coding-guidelines/v4.0/4-language-usage/1-general/g-1050/

plscope-utils

Introduction

plscope-utils is based on PL/Scope which is available in the Oracle Database since version 11.1. It consists of the
following two components:

Core Database Objects

Provides relational views and PL/SQL packages to simplify common source code analysis tasks. Requires a server
side installation.

SQL Developer Extension (plscope-utils for SQL Developer)

Extends SQL Developer by a PL/Scope node in the database navigator tree, context menus, views shown for tables,
views and PL/SQL nodes and some reports. Requires a client side installation only.

Part of plscope-utils is a check of naming conventions according to this coding guideline - either as a database view or
a Oracle SQL Developer report.

PL/SQL & SQL Coding Guidelines Version 4.1 Page 183 of 193

https://github.com/PhilippSalvisberg/plscope-utils
https://github.com/PhilippSalvisberg/plscope-utils/blob/main/database/README.md
https://github.com/PhilippSalvisberg/plscope-utils/blob/main/sqldev/README.md

Appendix

A - PL/SQL & SQL Coding Guidelines as PDF

These guidelines are primarily produced in HTML using Material for MkDocs.

However, we provide these guidelines also as PDF produced by wkhtmltopdf.

The formatting is not perfect, but it should be adequate for those who want to work with offline documents.

B - Mapping new guidelines to prior versions

Old
Id

New
Id

Text Severity Change-
ability

Effi-
ciency

Maintain-
ability

Port-
ability

58 6010 Always use a character
variable to execute dynamic
SQL.

Major X

59 6020 Try to use output bind
arguments in the RETURNING
INTO clause of dynamic DML
statements rather than the
USING clause.

Minor X

n/a 1080 Avoid using the same
expression on both sides of a
relational comparison operator
or a logical operator.

Minor X X

5 1050 Avoid using literals in your
code.

Minor X

4 1040 Avoid dead code. Minor X

6 1060 Avoid storing ROWIDs or
UROWIDs in database tables.

Major

PL/SQL & SQL Coding Guidelines Version 4.1 Page 184 of 193

https://trivadis.github.io/plsql-and-sql-coding-guidelines/
https://squidfunk.github.io/mkdocs-material/
https://wkhtmltopdf.org/

7 1070 Avoid nesting comment
blocks.

Minor X

3 1030 Avoid defining variables that
are not used.

Minor X X

2 1020 Always have a matching loop
or block label.

Minor X

1 1010 Try to label your sub blocks. Minor X

71 7410 Avoid standalone functions –
put your functions in
packages.

Minor X

73 7420 Always make the RETURN
statement the last statement
of your function.

Major X

72 7430 Try to use no more than one
RETURN statement within a
function.

Major X

n/a 7460 Try to define your
packaged/standalone function
deterministic if appropriate.

Major X

74 7440 Never use OUT parameters to
return values from a function.

Major

75 7450 Never return a NULL value
from a BOOLEAN function.

Major

n/a 7170 Avoid using an IN OUT
parameter as IN or OUT only.

Major X X

68 7160 Always explicitly state
parameter mode.

Major X

n/a 7125 Always use CREATE OR
REPLACE instead of CREATE
alone.

Minor X

63 7140 Always ensure that locally
defined procedures or
functions are referenced.

Major X

64 7150 Try to remove unused
parameters.

Minor X X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 185 of 193

60 7110 Try to use named notation
when calling program units.

Major X X

61 7120 Always add the name of the
program unit to its end
keyword.

Minor X

62 7130 Always use parameters or pull
in definitions rather than
referencing external variables
in a local program unit.

Major X

n/a 7810 Never use SQL inside PL/SQL
to read sequence numbers (or
SYSDATE).

Major X X

n/a 7740 Never handle multiple DML
events per trigger if primary
key is assigned in trigger.

Major X

n/a 7720 Never use multiple UPDATE
OF in trigger event clause.

Blocker X

n/a 7730 Avoid multiple DML events per
trigger.

Minor X

77 7710 Avoid cascading triggers. Major X

76 7510 Always prefix Oracle supplied
packages with owner schema
name.

Major

66 7220 Always use forward
declaration for private
functions and procedures.

Minor X

67 7230 Avoid declaring global
variables public.

Major

65 7210 Try to keep your packages
small. Include only few
procedures and functions that
are used in the same context.

Minor X X

n/a 7250 Never use RETURN in package
initialization block.

Minor X

69 7310 Avoid standalone procedures
– put your procedures in
packages.

Minor X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 186 of 193

n/a 7330 Always assign values to OUT
parameters.

Major X

70 7320 Avoid using RETURN
statements in a PROCEDURE.

Major X

n/a 7910 Never use DML within a SQL
macro.

Critical

n/a 8120 Never check existence of a
row to decide whether to
create it or not.

Major X

78 8110 Never use SELECT COUNT(*) if
you are only interested in the
existence of a row.

Major X

n/a 8510 Always use
dbms_application_info to track
program process transiently.

Minor X

79 8210 Always use synonyms when
accessing objects of another
application schema.

Major X X

n/a 8410 Always use application locks
to ensure a program unit is
only running once at a given
time.

Minor X

n/a 8310 Always validate input
parameter size by assigning
the parameter to a size limited
variable in the declaration
section of program unit.

Minor X

n/a 2230 Try to use SIMPLE_INTEGER
datatype when appropriate.

Minor X

19 2220 Try to use PLS_INTEGER
instead of NUMBER for
arithmetic operations with
integer values.

Minor X

18 2210 Avoid declaring NUMBER
variables, constants or
subtypes with no precision.

Minor X

20 2310 Avoid using CHAR data type. Major

PL/SQL & SQL Coding Guidelines Version 4.1 Page 187 of 193

21 2320 Never use VARCHAR data
type.

Major X

22 2330 Never use zero-length strings
to substitute NULL.

Major X

23 2340 Always define your
VARCHAR2 variables using
CHAR SEMANTIC (if not
defined anchored).

Minor

17 2190 Avoid using ROWID or
UROWID.

Major X

15 2180 Never use quoted identifiers. Major X

16 2185 Avoid using overly short
names for explicitly or
implicitly declared identifiers.

Minor X

8 2110 Try to use anchored
declarations for variables,
constants and types.

Major X

10 2130 Try to use subtypes for
constructs used often in your
code.

Minor X

n/a 2145 Never self-assign a variable. Minor X

9 2120 Try to have a single location to
define your types.

Minor X

13 2160 Avoid initializing variables
using functions in the
declaration section.

Critical

14 2170 Never overload variables. Major

12 2150 Avoid comparisons with NULL
value, consider using IS [NOT]
NULL.

Blocker X

n/a 2135 Avoid assigning values to
local variables that are not
used by a subsequent
statement.

Major X X

11 2140 Never initialize variables with
NULL.

Minor X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 188 of 193

n/a 2610 Never use self-defined weak
ref cursor types.

Minor X X X

24 2410 Try to use boolean data type
for values with dual meaning.

Minor X

25 2510 Avoid using the LONG and
LONG RAW data types.

Major X

30 3210 Always use BULK
OPERATIONS (BULK COLLECT,
FORALL) whenever you have
to execute a DML statement
for more than 4 times.

Major X

n/a 3220 Always process saved
exceptions from a FORALL
statement.

Major

n/a 3320 Try to move transactions
within a non-cursor loop into
procedures.

Major X

n/a 3310 Never commit within a cursor
loop.

Critical X

n/a 3190 Avoid using NATURAL JOIN. Major X

n/a 3180 Always specify column names
instead of positional
references in ORDER BY
clauses.

Major X

n/a 3195 Always use wildcards in a LIKE
clause.

Minor X

n/a 3185 Never use ROWNUM at the
same query level as ORDER
BY.

Major

28 3130 Try to use ANSI SQL-92 join
syntax.

Minor X X

27 3120 Always use table aliases when
your SQL statement involves
more than one source.

Major X

n/a 3145 Avoid using SELECT * directly
from a table or view.

Major X X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 189 of 193

26 3110 Always specify the target
columns when coding an
insert statement.

Major X

n/a 3150 Try to use identity columns for
surrogate keys.

Minor X

29 3140 Try to use anchored records
as targets for your cursors.

Major X

n/a 3160 Avoid visible virtual columns. Major X

n/a 3170 Always use DEFAULT ON
NULL declarations to assign
default values to table
columns if you refuse to store
NULL values.

Major

n/a 3115 Avoid self-assigning a column. Minor X

n/a 9040 Try using FX in string to
date/time conversion format
model to avoid fuzzy
conversion.

Minor

n/a 9030 Try to define a default value
on conversion errors.

Minor X

n/a 9020 Try to use a format model and
NLS_NUMERIC_CHARACTERS
in string to number conversion
functions.

Major X X

n/a 9010 Always use a format model in
string to date/time conversion
functions.

Major X X

45 4370 Avoid using EXIT to stop loop
processing unless you are in a
basic loop.

Major X

44 4360 Always use a WHILE loop to
process a loose array.

Minor X

n/a 4325 Never reuse labels in inner
scopes.

Major X

42 4340 Always use a NUMERIC FOR
loop to process a dense array.

Minor X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 190 of 193

43 4350 Always use 1 as lower and
COUNT() as upper bound
when looping through a dense
array.

Major

46 4375 Always use EXIT WHEN
instead of an IF statement to
exit from a loop.

Minor X

39 4310 Never use GOTO statements in
your code.

Major X

n/a 4365 Never use unconditional
CONTINUE or EXIT in a loop.

Major X

40 4320 Always label your loops. Minor X

41 4330 Always use a CURSOR FOR
loop to process the complete
cursor results unless you are
using bulk operations.

Minor X

48 4385 Never use a cursor for loop to
check whether a cursor
returns data.

Major X

50 4395 Avoid hard-coded upper or
lower bound values with FOR
loops.

Minor X X

47 4380 Try to label your EXIT WHEN
statements.

Minor X

49 4390 Avoid use of unreferenced
FOR loop indexes.

Major X

34 4140 Avoid executing any
statements between a SQL
operation and the usage of an
implicit cursor attribute.

Major

31 4110 Always use %NOTFOUND
instead of NOT %FOUND to
check whether a cursor
returned data.

Minor X

33 4130 Always close locally opened
cursors.

Major X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 191 of 193

32 4120 Avoid using %NOTFOUND
directly after the FETCH when
working with BULK
OPERATIONS and LIMIT
clause.

Critical

37 4230 Always use a COALESCE
instead of a NVL command, if
parameter 2 of the NVL
function is a function call or a
SELECT statement.

Critical X

36 4220 Try to use CASE rather than
DECODE.

Minor X X

35 4210 Try to use CASE rather than an
IF statement with multiple
ELSIF paths.

Major X

n/a 4250 Avoid using identical
conditions in different
branches of the same IF or
CASE statement.

Major X

38 4240 Always use a CASE instead of
a NVL2 command if parameter
2 or 3 of NVL2 is either a
function call or a SELECT
statement.

Critical X

n/a 4260 Avoid inverting boolean
conditions with NOT.

Minor X

n/a 4270 Avoid comparing boolean
values to boolean literals.

Minor X

n/a 5080 Always use
FORMAT_ERROR_BACKTRACE
when using
FORMAT_ERROR_STACK or
SQLERRM.

Minor X

n/a 5010 Try to use a error/logging
framework for your
application.

Critical

51 5020 Never handle unnamed
exceptions using the error
number.

Critical X

PL/SQL & SQL Coding Guidelines Version 4.1 Page 192 of 193

52 5030 Never assign predefined
exception names to user
defined exceptions.

Blocker

57 5070 Avoid using Oracle predefined
exceptions.

Critical

56 5060 Avoid unhandled exceptions. Major

53 5040 Avoid use of WHEN OTHERS
clause in an exception section
without any other specific
handlers.

Major

54 n/a Avoid use of EXCEPTION_INIT
pragma for a 20nnn error.

Major

55 5050 Avoid use of the
RAISE_APPLICATION_ERROR
built-in procedure with a hard-
coded 20nnn error number or
hard-coded message.

Major X X

1. We see a table and a view as a collection. A jar containing beans is labeled "beans". In Java we call such a collection also "beans"
(List<Bean> beans) and name an entry "bean" (for (Bean bean : beans) {...}). An entry of a table is a row (singular) and a
table can contain an unbounded number of rows (plural). This and the fact that the Oracle database uses the same concept for their
tables and views lead to the decision to use the plural to name a table or a view. ↩↩↩

2. It used to be good practice to use uppercase keywords and lowercase names to help visualize code structure. But practically all editors
support more or less advanced color highlighting of code, similar to the examples in these guidelines. Hence as of version 4.0 we are now
recommending all lowercase, as this is easier and faster for the brain to process. You may choose to prefer the old rule - however, it is
important to always be consistent, like for example keywords always in uppercase and names always in lowercase. ↩

3. Tabs are not used because the indentation depends on the editor configuration. We want to ensure that the code looks the same,
independent of the editor used. Hence, no tabs. But why not use 8 spaces? That's the traditional value for a tab. When writing a package
function the code in the body has an indentation of 3. That's 24 characters as a starting point for the code. We think it's too much.
Especially if we try to keep a line below 100 or 80 characters. Other good options would be 2 or 4 spaces. We settled for 3 spaces as a
compromise. The indentation is still good visible, but does not use too much space. ↩

PL/SQL & SQL Coding Guidelines Version 4.1 Page 193 of 193

	Table of Contents
	About
	Foreword
	License
	Trademarks
	Disclaimer

	Revision History

	Introduction
	Scope
	Document Conventions
	SQALE characteristics and subcharacteristics
	Severity of the rule
	Keywords used
	Validator support
	Why are standards important
	We have other standards
	We do not agree with all your standards

	Naming Conventions
	General Guidelines
	Naming Conventions for PL/SQL
	Database Object Naming Conventions
	Collection Type
	Column
	Check Constraint
	DML / Instead of Trigger
	Foreign Key Constraint
	Function
	Index
	Object Type
	Package
	Primary Key Constraint
	Procedure
	Sequence
	Synonym
	System Trigger
	Table
	Temporary Table (Global Temporary Table)
	Unique Key Constraint
	View

	Coding Style
	Formatting
	Rules
	Example

	Code Commenting
	Conventions
	Commenting Tags
	Example

	Language Usage
	General
	G-1010: Try to label your sub blocks.
	Reason
	Example (bad)
	Example (good)

	G-1020: Always have a matching loop or block label.
	Reason
	Example (bad)
	Example (good)

	G-1030: Avoid defining variables that are not used.
	Reason
	Example (bad)
	Example (good)

	G-1040: Avoid dead code.
	Reason
	Example (bad)
	Example (good)

	G-1050: Avoid using literals in your code.
	Reason
	Example (bad)
	Example (good)

	G-1060: Avoid storing ROWIDs or UROWIDs in database tables.
	Reason
	Example (bad)
	Example (good)

	G-1070: Avoid nesting comment blocks.
	Reason
	Example (bad)
	Example (good)

	G-1080: Avoid using the same expression on both sides of a relational comparison operator or a logical operator.
	Reason
	Example (bad)
	Example (good)

	Variables & Types
	General
	G-2110: Try to use anchored declarations for variables, constants and types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2120: Try to have a single location to define your types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2130: Try to use subtypes for constructs used often in your code.
	REASON
	EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2135: Avoid assigning values to local variables that are not used by a subsequent statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2140: Never initialize variables with NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2145: Never self-assign a variable.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2160: Avoid initializing variables using functions in the declaration section.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2170: Never overload variables.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2180: Never use quoted identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2190: Avoid using ROWID or UROWID.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Numeric Data Types
	G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Character Data Types
	G-2310: Avoid using CHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2320: Never use VARCHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2330: Never use zero-length strings to substitute NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Boolean Data Types
	G-2410: Try to use boolean data type for values with dual meaning.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	Large Objects
	G-2510: Avoid using the LONG and LONG RAW data types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Cursor Variables
	G-2610: Never use self-defined weak ref cursor types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	DML & SQL
	General
	G-3110: Always specify the target columns when coding an insert statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3115: Avoid self-assigning a column.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3120: Always use table aliases when your SQL statement involves more than one source.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-3130: Try to use ANSI SQL-92 join syntax.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3140: Try to use anchored records as targets for your cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3145: Avoid using SELECT * directly from a table or view.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3150: Try to use identity columns for surrogate keys.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3160: Avoid visible virtual columns.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3180: Always specify column names instead of positional references in ORDER BY clauses.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3185: Never use ROWNUM at the same query level as ORDER BY.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3190: Avoid using NATURAL JOIN.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3195: Always use wildcards in a LIKE clause.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Bulk Operations
	G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3220: Always process saved exceptions from a FORALL statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Transaction Control
	G-3310: Never commit within a cursor loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)
	EXAMPLE (BEST)

	G-3320: Try to move transactions within a non-cursor loop into procedures.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Control Structures
	CURSOR
	G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4130: Always close locally opened cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	CASE / IF / DECODE / NVL / NVL2 / COALESCE
	G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4220: Try to use CASE rather than DECODE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4250: Avoid using identical conditions in different branches of the same IF or CASE statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4260: Avoid inverting boolean conditions with NOT.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4270: Avoid comparing boolean values to boolean literals.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Flow Control
	G-4310: Never use GOTO statements in your code.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4320: Always label your loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4325: Never reuse labels in inner scopes.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4340: Always use a NUMERIC FOR loop to process a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4360: Always use a WHILE loop to process a loose array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4365: Never use unconditional CONTINUE or EXIT in a loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4380: Try to label your EXIT WHEN statements.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4385: Never use a cursor for loop to check whether a cursor returns data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4390: Avoid use of unreferenced FOR loop indexes.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4395: Avoid hard-coded upper or lower bound values with FOR loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Exception Handling
	G-5010: Try to use a error/logging framework for your application.
	Reason
	Example (bad)
	Example (good)

	G-5020: Never handle unnamed exceptions using the error number.
	Reason
	Example (bad)
	Example (good)

	G-5030: Never assign predefined exception names to user defined exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.
	Reason
	Example (bad)
	Example (good)

	G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
	Reason
	Example (bad)
	Example (good)

	G-5060: Avoid unhandled exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5070: Avoid using Oracle predefined exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5080: Always use FORMAT_ERROR_BACKTRACE when using FORMAT_ERROR_STACK or SQLERRM.
	Reason
	Example (bad)
	Example (good)

	Dynamic SQL
	G-6010: Always use a character variable to execute dynamic SQL.
	Reason
	Example (bad)
	Example (good)

	G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.
	Reason
	Example (bad)
	Example (good)

	Stored Objects
	General
	G-7110: Try to use named notation when calling program units.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7120: Always add the name of the program unit to its end keyword.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7125: Always use CREATE OR REPLACE instead of CREATE alone.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7140: Always ensure that locally defined procedures or functions are referenced.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7150: Try to remove unused parameters.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7160: Always explicitly state parameter mode.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7170: Avoid using an IN OUT parameter as IN or OUT only.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Packages
	G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
	REASON

	G-7220: Always use forward declaration for private functions and procedures.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7230: Avoid declaring global variables public.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7250: Never use RETURN in package initialization block.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Procedures
	G-7310: Avoid standalone procedures – put your procedures in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7320: Avoid using RETURN statements in a PROCEDURE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7330: Always assign values to OUT parameters.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Functions
	G-7410: Avoid standalone functions – put your functions in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7420: Always make the RETURN statement the last statement of your function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7430: Try to use no more than one RETURN statement within a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-7440: Never use OUT parameters to return values from a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7450: Never return a NULL value from a BOOLEAN function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7460: Try to define your packaged/standalone function deterministic if appropriate.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Oracle Supplied Packages
	G-7510: Always prefix Oracle supplied packages with owner schema name.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Object Types
	Triggers
	G-7710: Avoid cascading triggers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7720: Never use multiple UPDATE OF in trigger event clause.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7730: Avoid multiple DML events per trigger.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7740: Never handle multiple DML events per trigger if primary key is assigned in trigger.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)
	EXAMPLE (BEST)

	Sequences
	G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	SQL Macros
	G-7910: Never use DML within a SQL macro.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Patterns
	Checking the Number of Rows
	G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-8120: Never check existence of a row to decide whether to create it or not.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Access objects of foreign application schemas
	G-8210: Always use synonyms when accessing objects of another application schema.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Validating input parameter size
	G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Ensure single execution at a time of a program unit
	G-8410: Always use application locks to ensure a program unit is only running once at a given time.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Use dbms_application_info package to follow progress of a process
	G-8510: Always use dbms_application_info to track program process transiently.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Function Usage
	G-9010: Always use a format model in string to date/time conversion functions.
	Reason
	Example (bad)
	Example (good)

	G-9020: Try to use a format model and NLS_NUMERIC_CHARACTERS in string to number conversion functions.
	Reason
	Example (bad)
	Example (good)

	G-9030: Try to define a default value on conversion errors.
	Restriction
	Reason
	Example (bad)
	Example (good)

	G-9040: Try using FX in string to date/time conversion format model to avoid fuzzy conversion.
	Reason
	Example (bad)
	Example (good)

	Complexity Analysis
	Halstead Metrics
	Calculation

	McCabe's Cyclomatic Complexity
	Description
	Calculation

	Code Reviews
	Tool Support
	db* CODECOP for SQL Developer
	Introduction
	Examples

	db* CODECOP for SonarQube
	Introduction
	Examples
	Run Code Analysis via SonarScanner
	Run Code Analyis with CI Environments
	View Code Analysis Result in SonarQube

	db* CODECOP Command Line
	Introduction
	Examples

	db* CODECOP Validators
	Provided Validators

	plscope-utils
	Introduction

	Appendix
	A - PL/SQL & SQL Coding Guidelines as PDF
	B - Mapping new guidelines to prior versions

