
PL/SQL & SQL
Coding Guidelines

Tips for Development & Operation

Document Version 3.5
© 2019 Trivadis AG

2

6
6
7
7
7

7

8
8
8
8
9
9

10
10
11

12
12
12
13
13
14
14
14
14
15
15
15
15
15
16
16
16
16
17
17
17
18

19
19
19
19

21
21
21
21

22
22
22
23
25
26
28
29

Table of Contents

Table of Contents

About
Foreword
License

Trademarks
Disclaimer

Revision History

Introduction
Scope
Document Conventions

SQALE characteristics and subcharacteristics
Severity of the rule
Keywords used
Why are standards important
We have other standards
We do not agree with all your standards

Naming Conventions
General Guidelines
Naming Conventions for PL/SQL
Database Object Naming Conventions

Collection Type
Column
Check Constraint
DML / Instead of Trigger
Foreign Key Constraint
Function
Index
Object Type
Package
Primary Key Constraint
Procedure
Sequence
Synonym
System Trigger
Table
Temporary Table (Global Temporary Table)
Unique Key Constraint
View

Coding Style
Formatting

Rules
Example

Code Commenting
Conventions
Commenting Tags
Example

Language Usage
General

G-1010: Try to label your sub blocks.
G-1020: Always have a matching loop or block label.
G-1030: Avoid defining variables that are not used.
G-1040: Avoid dead code.
G-1050: Avoid using literals in your code.
G-1060: Avoid storing ROWIDs or UROWIDs in database tables.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 2 of 144

30

31
31
31
32
33
34
35
36
37
38
39
40
41
41
42
43
44
44
45
46
47
48
48
49
49

50
50
50
51
53
54
55
56
57
58
59
60
60

61
61
61
62
64
65
67
67
68
69
70
71
71
73
75
76
77
78
79
81
82
84
85
86

87
87
88
89
91

G-1070: Avoid nesting comment blocks.

Variables & Types
General

G-2110: Try to use anchored declarations for variables, constants and types.
G-2120: Try to have a single location to define your types.
G-2130: Try to use subtypes for constructs used often in your code.
G-2140: Never initialize variables with NULL.
G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.
G-2160: Avoid initializing variables using functions in the declaration section.
G-2170: Never overload variables.
G-2180: Never use quoted identifiers.
G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
G-2190: Avoid using ROWID or UROWID.

Numeric Data Types
G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.
G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

Character Data Types
G-2310: Avoid using CHAR data type.
G-2320: Avoid using VARCHAR data type.
G-2330: Never use zero-length strings to substitute NULL.
G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

Boolean Data Types
G-2410: Try to use boolean data type for values with dual meaning.

Large Objects
G-2510: Avoid using the LONG and LONG RAW data types.

DML & SQL
General

G-3110: Always specify the target columns when coding an insert statement.
G-3120: Always use table aliases when your SQL statement involves more than one source.
G-3130: Try to use ANSI SQL-92 join syntax.
G-3140: Try to use anchored records as targets for your cursors.
G-3150: Try to use identity columns for surrogate keys.
G-3160: Avoid visible virtual columns.
G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
G-3180: Always specify column names instead of positional references in ORDER BY clauses.
G-3190: Avoid using NATURAL JOIN.

Bulk Operations
G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.

Control Structures
CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
G-4130: Always close locally opened cursors.
G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

CASE / IF / DECODE / NVL / NVL2 / COALESCE
G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
G-4220: Try to use CASE rather than DECODE.
G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.

Flow Control
G-4310: Never use GOTO statements in your code.
G-4320: Always label your loops.
G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
G-4340: Always use a NUMERIC FOR loop to process a dense array.
G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
G-4360: Always use a WHILE loop to process a loose array.
G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
G-4380 Try to label your EXIT WHEN statements.
G-4385: Never use a cursor for loop to check whether a cursor returns data.
G-4390: Avoid use of unreferenced FOR loop indexes.
G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

Exception Handling
G-5010: Try to use a error/logging framework for your application.
G-5020: Never handle unnamed exceptions using the error number.
G-5030: Never assign predefined exception names to user defined exceptions.
G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 3 of 144

92
93
94

95
95
96

97
97
97
98
99

101
102
103
103
104
106
108
110
110
111
112
112
113
114
115
116
117
118
118
119
120
120
122
122

123
123
123
124
125
125
126
126
128
128
130
130

131
131
131

131
131
132

134

135
135
135
135
136

138
138

G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
G-5060: Avoid unhandled exceptions.
G-5070: Avoid using Oracle predefined exceptions.

Dynamic SQL
G-6010: Always use a character variable to execute dynamic SQL.
G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.

Stored Objects
General

G-7110: Try to use named notation when calling program units.
G-7120 Always add the name of the program unit to its end keyword.
G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
G-7140: Always ensure that locally defined procedures or functions are referenced.
G-7150: Try to remove unused parameters.

Packages
G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
G-7220: Always use forward declaration for private functions and procedures.
G-7230: Avoid declaring global variables public.
G-7240: Avoid using an IN OUT parameter as IN or OUT only.

Procedures
G-7310: Avoid standalone procedures – put your procedures in packages.
G-7320: Avoid using RETURN statements in a PROCEDURE.

Functions
G-7410: Avoid standalone functions – put your functions in packages.
G-7420: Always make the RETURN statement the last statement of your function.
G-7430: Try to use no more than one RETURN statement within a function.
G-7440: Never use OUT parameters to return values from a function.
G-7450: Never return a NULL value from a BOOLEAN function.
G-7460: Try to define your packaged/standalone function deterministic if appropriate.

Oracle Supplied Packages
G-7510: Always prefix ORACLE supplied packages with owner schema name.

Object Types
Triggers

G-7710: Avoid cascading triggers.
Sequences

G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

Patterns
Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
G-8120: Never check existence of a row to decide whether to create it or not.

Access objects of foreign application schemas
G-8210: Always use synonyms when accessing objects of another application schema.

Validating input parameter size
G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.

Ensure single execution at a time of a program unit
G-8410: Always use application locks to ensure a program unit is only running once at a given time.

Use dbms_application_info package to follow progress of a process
G-8510: Always use dbms_application_info to track program process transiently.

Complexity Analysis
Halstead Metrics

Calculation

McCabe's Cyclomatic Complexity
Description
Calculation

Code Reviews

Tool Support
Development

Setting the preferences
Activate PLSQL Cop using context menu
Software metrics

Appendix
A - PL/SQL & SQL Coding Guidelines as PDF

PL/SQL & SQL Coding Guidelines Version 3.5 Page 4 of 144

138B - Mapping new guidelines to prior versions

PL/SQL & SQL Coding Guidelines Version 3.5 Page 5 of 144

About

Foreword

In the I.T. world of today, robust and secure applications are becoming more and more important.
Many business processes no longer work without I.T. and the dependence of businesses on their I.T.
has grown tremendously, meaning we need robust and maintainable applications. An important
requirement is to have standards and guidelines, which make it possible to maintain source code
created by a number of people quickly and easily. This forms the basis of well functioning off- or on-
shoring strategy, as it allows quality assurance to be carried out efficiently at the source.

Good standards and guidelines are based on the wealth of experience and knowledge gained from past (and future?)
problems, such as those, which can arise in a cloud environment, for example.

Urban Lankes
President of the bord of directors
Trivadis

The Oracle Database Developer community is made stronger by resources freely shared by experts
around the world, such as the Trivadis Coding Guidelines. If you have not yet adopted standards for
writing SQL and PL/SQL in your applications, this is a great place to start.

Steven Feuerstein
Team Lead, Oracle Developer Advocates
Oracle

PL/SQL & SQL Coding Guidelines Version 3.5 Page 6 of 144

Coding Guidelines are a crucial part of software development. It is a matter of fact, that code is more
often read than written – therefore we should take efforts to ease the work of the reader, which is
not necessarily the author.

I am convinced that this standard may be a good starting point for your own guidelines.

Roger Troller
Senior Consultant
finnova AG Bankware

License

The Trivadis PL/SQL & SQL Coding Guidelines are licensed under the Apache License, Version 2.0. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0.

Trademarks

All terms that are known trademarks or service marks have been capitalized. All trademarks are the property of their
respective owners.

Disclaimer

The authors and publisher shall have neither liability nor responsibility to any person or entity with respect to the loss or
damages arising from the information contained in this work. This work may include inaccuracies or typographical errors
and solely represent the opinions of the authors. Changes are periodically made to this document without notice. The
authors reserve the right to revise this document at any time without notice.

Revision History

The first version of these guidelines was compiled by Roger Troller on March 17, 2009. Jörn Kulessa, Daniela Reiner,
Richard Bushnell, Andreas Flubacher and Thomas Mauch helped Roger complete version 1.2 until August 21, 2009. This
was the first GA version. The handy printed version in A5 format was distributed free of charge at the DOAG Annual
Conference and on other occasions. Since then Roger updated the guidelines regularily. Philipp Salvisberg was involved in
the review process for version 3.0 which was a major update. Philipp took the lead, after Roger left Trivadis in 2016.

Since July, 7 2018 these guidelines are hosted on GitHub. Ready to be enhanced by the community and forked to fit
specific needs.

On https://github.com/Trivadis/plsql-and-sql-coding-guidelines/releases you find the release information for every
version since 1.2.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 7 of 144

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/Trivadis/plsql-and-sql-coding-guidelines/releases

Introduction

This document describes rules and recommendations for developing applications using the PL/SQL & SQL Language.

Scope

This document applies to the PL/SQL and SQL language as used within ORACLE databases and tools, which access
ORACLE databases.

Document Conventions

SQALE (Software Quality Assessment based on Lifecycle Expectations) is a method to support the evaluation of a
software application source code. It is a generic method, independent of the language and source code analysis tools.

SQALE characteristics and subcharacteristics

Characteristic Description and Subcharacteristics

Changeability The capability of the software product to enable a specified modification to be implemented.

Architecture related changeability

Logic related changeability

Data related changeability

Efficiency The capability of the software product to provide appropriate performance, relative to the amount of resources used, under
stated conditions.

Memory use

Processor use

Network use

Maintainability The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation of
the software to changes in environment, and in requirements and functional specifications.

Understandability

Readability

Portability The capability of the software product to be transferred from one environment to another.

Compiler related portability

Hardware related portability

Language related portability

OS related portability

Software related portability

Time zone related portability.

Reliability The capability of the software product to maintain a specified level of performance when used under specified conditions.

Architecture related reliability

Data related reliability

PL/SQL & SQL Coding Guidelines Version 3.5 Page 8 of 144

Data related reliability

Exception handling

Fault tolerance

Instruction related reliability

Logic related reliability

Resource related reliability

Synchronization related reliability

Unit tests coverage.

Reusability The capability of the software product to be reused within the development process.

Modularity

Transportability.

Security The capability of the software product to protect information and data so that unauthorized persons or systems cannot read
or modify them and authorized persons or systems are not denied access to them.

API abuse

Errors (e.g. leaving a system in a vulnerable state)

Input validatation and representation

Security features.

Testability The capability of the software product to enable modified software to be validated.

Integration level testability

Unit level testability.

Severity of the rule

Blocker

Will or may result in a bug.



Critical

Will have a high/direct impact on the maintenance cost.



Major

Will have a medium/potential impact on the maintenance cost.



Minor

Will have a low impact on the maintenance cost.



Info

Very low impact; it is just a remediation cost report.



PL/SQL & SQL Coding Guidelines Version 3.5 Page 9 of 144

Keywords used

Keyword Meaning

Always Emphasizes this rule must be enforced.

Never Emphasizes this action must not happen.

Avoid Emphasizes that the action should be prevented, but some exceptions may exist.

Try Emphasizes that the rule should be attempted whenever possible and
appropriate.

Example Precedes text used to illustrate a rule or a recommendation.

Reason Explains the thoughts and purpose behind a rule or a recommendation.

Restriction Describes the circumstances to be fulfilled to make use of a rule.

Why are standards important

For a machine executing a program, code formatting is of no importance. However, for the human eye, well-formatted
code is much easier to read. Modern tools can help to implement format and coding rules.

Implementing formatting and coding standards has the following advantages for PL/SQL development:

Well-formatted code is easier to read, analyze and maintain (not only for the author but also for other developers).

The developers do not have to define their own guidelines - it is already defined.

The code has a structure that makes it easier to avoid making errors.

The code is more efficient concerning performance and organization of the whole application.

The code is more modular and thus easier to use for other applications.

We have other standards

This document only defines possible standards. These standards are not written in stone, but are meant as guidelines. If
standards already exist, and they are different from those in this document, it makes no sense to change them.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 10 of 144

We do not agree with all your standards

There are basically two types of standards.

1. Non-controversial

These standards make sense. There is no reason not to follow them. An example of this category is G-2150: Avoid
comparisons with NULL value, consider using IS [NOT] NULL.

2. Controversial

Almost every rule/guildeline falls into this category. An example of this category is 3 space indention. - Why not 2 or 4
or even 8? Why not use tabs? You can argue in favor of all these options. In most cases it does not really matter
which option you choose. Being consistent is more important. In this case it will make the code easier to read.

For very controversial rules, we have started to include the reasoning either as a footnote or directly in the text.

Usually it is not helpful to open an issue on GitHub to request to change a highly controversial rule such as the one
mentioned. For example, use 2 spaces instead of 3 spaces for an indentation. This leads to a discussion where the people
in favor of 4 spaces start to argument as well. There is no right or wrong here. You just have to agree on a standard.

More effective is to fork this repository and amend the standards to fit your needs/expectations.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 11 of 144

https://github.com/Trivadis/plsql-and-sql-coding-guidelines

Naming Conventions

General Guidelines

1. Never use names with a leading numeric character.

2. Always choose meaningful and specific names.

3. Avoid using abbreviations unless the full name is excessively long.

4. Avoid long abbreviations. Abbreviations should be shorter than 5 characters.

5. Any abbreviations must be widely known and accepted.

6. Create a glossary with all accepted abbreviations.

7. Never use ORACLE keywords as names. A list of ORACLEs keywords may be found in the dictionary view
V$RESERVED_WORDS .

8. Avoid adding redundant or meaningless prefixes and suffixes to identifiers.
Example: CREATE TABLE emp_table .

9. Always use one spoken language (e.g. English, German, French) for all objects in your application.

10. Always use the same names for elements with the same meaning.

Naming Conventions for PL/SQL

In general, ORACLE is not case sensitive with names. A variable named personname is equal to one named PersonName,
as well as to one named PERSONNAME. Some products (e.g. TMDA by Trivadis, APEX, OWB) put each name within double
quotes (") so ORACLE will treat these names to be case sensitive. Using case sensitive variable names force developers to
use double quotes for each reference to the variable. Our recommendation is to write all names in lowercase and to avoid
double quoted identifiers.

A widely used convention is to follow a {prefix}variablecontent{suffix} pattern.

The following table shows a possible set of naming conventions.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 12 of 144

Identifier Prefix Suffix Example

Global Variable g_ g_version

Local Variable l_ l_version

Cursor c_ c_employees

Record r_ r_employee

Array / Table t_ t_employees

Object o_ o_employee

Cursor Parameter p_ p_empno

In Parameter in_ in_empno

Out Parameter out_ out_ename

In/Out Parameter io_ io_employee

Record Type Definitions r_ _type r_employee_type

Array/Table Type Definitions t_ _type t_employees_type

Exception e_ e_employee_exists

Constants co_ co_empno

Subtypes _type big_string_type

Database Object Naming Conventions

Never enclose object names (table names, column names, etc.) in double quotes to enforce mixed case or lower case
object names in the data dictionary.

Collection Type

A collection type should include the name of the collected objects in their name. Furthermore, they should have the suffix
_ct to identify it as a collection.

Optionally prefixed by a project abbreviation.

Examples:

employees_ct

orders_ct

PL/SQL & SQL Coding Guidelines Version 3.5 Page 13 of 144

Column

Singular name of what is stored in the column (unless the column data type is a collection, in this case you use plural
names)

Add a comment to the database dictionary for every column.

Check Constraint

Table name or table abbreviation followed by the column and/or role of the check constraint, a _ck and an optional
number suffix.

Examples:

employees_salary_min_ck

orders_mode_ck

DML / Instead of Trigger

Choose a naming convention that includes:

either

the name of the object the trigger is added to,

any of the triggering events:

_br_iud for Before Row on Insert, Update and Delete

_io_id for Instead of Insert and Delete

or

the name of the object the trigger is added to,

the activity done by the trigger,

the suffix _trg

Examples:

employees_br_iud

orders_audit_trg

orders_journal_trg

Foreign Key Constraint

Table abbreviation followed by referenced table abbreviation followed by a _fk and an optional number suffix.

Examples:

empl_dept_fk

sct_icmd_ic_fk1

1

PL/SQL & SQL Coding Guidelines Version 3.5 Page 14 of 144

Function

Name is built from a verb followed by a noun in general. Nevertheless, it is not sensible to call a function get_... as a
function always gets something.

The name of the function should answer the question “What is the outcome of the function?”

Optionally prefixed by a project abbreviation.

Example: employee_by_id

If more than one function provides the same outcome, you have to be more specific with the name.

Index

Indexes serving a constraint (primary, unique or foreign key) are named accordingly.

Other indexes should have the name of the table and columns (or their purpose) in their name and should also have _idx

as a suffix.

Object Type

The name of an object type is built by its content (singular) followed by a _ot suffix.

Optionally prefixed by a project abbreviation.

Example: employee_ot

Package

Name is built from the content that is contained within the package.

Optionally prefixed by a project abbreviation.

Examples:

employees_api - API for the employee table

logging_up - Utilities including logging support

Primary Key Constraint

Table name or table abbreviation followed by the suffix _pk .

Examples:

employees_pk

departments_pk

sct_contracts_pk

PL/SQL & SQL Coding Guidelines Version 3.5 Page 15 of 144

Procedure

Name is built from a verb followed by a noun. The name of the procedure should answer the question “What is done?”

Procedures and functions are often named with underscores between words because some editors write all letters in
uppercase in the object tree, so it is difficult to read them.

Optionally prefixed by a project abbreviation.

Examples:

calculate_salary

set_hiredate

check_order_state

Sequence

Name is built from the table name (or its abbreviation) the sequence serves as primary key generator and the suffix _seq
or the purpose of the sequence followed by a _seq .

Optionally prefixed by a project abbreviation.

Examples:

employees_seq

order_number_seq

Synonym

Synonyms should be used to address an object in a foreign schema rather than to rename an object. Therefore, synonyms
should share the name with the referenced object.

System Trigger

Name of the event the trigger is based on.

Activity done by the trigger

Suffix _trg

Examples:

ddl_audit_trg

logon_trg

PL/SQL & SQL Coding Guidelines Version 3.5 Page 16 of 144

Table

Plural name of what is contained in the table (unless the table is designed to always hold one row only – then you should
use a singular name).

Suffixed by _eb when protected by an editioning view.

Add a comment to the database dictionary for every table and every column in the table.

Optionally prefixed by a project abbreviation.

Examples:

employees

departments

countries_eb - table interfaced by an editioning view named countries

sct_contracts

sct_contract_lines

sct_incentive_modules

Temporary Table (Global Temporary Table)

Naming as described for tables.

Optionally suffixed by _tmp

Optionally prefixed by a project abbreviation.

Examples:

employees_tmp

contracts_tmp

Unique Key Constraint

Table name or table abbreviation followed by the role of the unique key constraint, a _uk and an optional number suffix.

Examples:

employees_name_uk

departments_deptno_uk

sct_contracts_uk

sct_coli_uk

sct_icmd_uk1

1

PL/SQL & SQL Coding Guidelines Version 3.5 Page 17 of 144

View

Plural name of what is contained in the view. Optionally suffixed by an indicator identifying the object as a view (mostly
used, when a 1:1 view layer lies above the table layer)

Editioning views are named like the original underlying table to avoid changing the existing application code when
introducing edition based redefinition (EBR).

Add a comment to the database dictionary for every view and every column.

Optionally prefixed by a project abbreviation.

Examples:

active_orders

orders_v - a view to the orders table

countries - an editioning view for table countries_eb

1

PL/SQL & SQL Coding Guidelines Version 3.5 Page 18 of 144

Coding Style

Formatting

Rules

Rule Description

1 Keywords are written uppercase, names are written in lowercase.

2 3 space indention .

3 One command per line.

4 Keywords LOOP , ELSE , ELSIF , END IF , WHEN on a new line.

5 Commas in front of separated elements.

6 Call parameters aligned, operators aligned, values aligned.

7 SQL keywords are right aligned within a SQL command.

8 Within a program unit only line comments -- are used.

9 Brackets are used when needed or when helpful to clarify a
construct.

Example

2

PL/SQL & SQL Coding Guidelines Version 3.5 Page 19 of 144

PROCEDURE set_salary(in_employee_id IN employees.employee_id%TYPE) IS
 CURSOR c_employees(p_employee_id IN employees.employee_id%TYPE) IS
 SELECT last_name
 ,first_name
 ,salary
 FROM employees
 WHERE employee_id = p_employee_id
 ORDER BY last_name
 ,first_name;

 r_employee c_employees%ROWTYPE;
 l_new_salary employees.salary%TYPE;
BEGIN
 OPEN c_employees(p_employee_id => in_employee_id);
 FETCH c_employees INTO r_employee;
 CLOSE c_employees;

 new_salary (in_employee_id => in_employee_id
 ,out_salary => l_new_salary);

 -- Check whether salary has changed
 IF r_employee.salary <> l_new_salary THEN
 UPDATE employees
 SET salary = l_new_salary
 WHERE employee_id = in_employee_id;
 END IF;
END set_salary;

PL/SQL & SQL Coding Guidelines Version 3.5 Page 20 of 144

Code Commenting

Conventions

Inside a program unit only use the line commenting technique -- unless you temporarly deactivate code sections for
testing.

To comment the source code for later document generation, comments like /** ... */ are used. Within these
documentation comments, tags may be used to define the documentation structure.

Tools like ORACLE SQL Developer or PL/SQL Developer include documentation functionality based on a javadoc-like
tagging.

Commenting Tags

Tag Meaning Example

param Description of a parameter. @param in_string input string

return Description of the return value of a function. @return result of the calculation

throws Describe errors that may be raised by the program
unit.

@throws NO_DATA_FOUND

Example

This is an example using the documentation capabilities of SQL Developer.

/**
Check whether we passed a valid sql name

@param in_name string to be checked
@return in_name if the string represents a valid sql name
@throws ORA-44003: invalid SQL name

Call Example:
<pre>
 SELECT TVDAssert.valid_sql_name('TEST') from dual;
 SELECT TVDAssert.valid_sql_name('123') from dual
</pre>
*/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 21 of 144

Language Usage

General

G-1010: Try to label your sub blocks.

Reason

It's a good alternative for comments to indicate the start and end of a named processing.

Example (bad)

Example (good)

Minor

Maintainability



BEGIN
 BEGIN
 NULL;
 END;

 BEGIN
 NULL;
 END;
END;
/

BEGIN
 <<prepare_data>>
 BEGIN
 NULL;
 END prepare_data;

 <<process_data>>
 BEGIN
 NULL;
 END process_data;
END good;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 22 of 144

G-1020: Always have a matching loop or block label.

Reason

Use a label directly in front of loops and nested anonymous blocks:

To give a name to that portion of code and thereby self-document what it is doing.

So that you can repeat that name with the END statement of that block or loop.

Example (bad)

Example (good)

Minor

Maintainability



DECLARE
 i INTEGER;
 co_min_value CONSTANT INTEGER := 1;
 co_max_value CONSTANT INTEGER := 10;
 co_increment CONSTANT INTEGER := 1;
BEGIN
 <<prepare_data>>
 BEGIN
 NULL;
 END;

 <<process_data>>
 BEGIN
 NULL;
 END;

 i := co_min_value;
 <<while_loop>>
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 END LOOP;

 <<basic_loop>>
 LOOP
 EXIT basic_loop;
 END LOOP;

 <<for_loop>>
 FOR i IN co_min_value..co_max_value
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 23 of 144

DECLARE
 i INTEGER;
 co_min_value CONSTANT INTEGER := 1;
 co_max_value CONSTANT INTEGER := 10;
 co_increment CONSTANT INTEGER := 1;
BEGIN
 <<prepare_data>>
 BEGIN
 NULL;
 END prepare_data;

 <<process_data>>
 BEGIN
 NULL;
 END process_data;

 i := co_min_value;
 <<while_loop>>
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 END LOOP while_loop;

 <<basic_loop>>
 LOOP
 EXIT basic_loop;
 END LOOP basic_loop;

 <<for_loop>>
 FOR i IN co_min_value..co_max_value
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP for_loop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 24 of 144

G-1030: Avoid defining variables that are not used.

Reason

Unused variables decrease the maintainability and readability of your code.

Example (bad)

Example (good)

Minor

Efficiency, Maintainability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_last_name employees.last_name%TYPE;
 l_first_name employees.first_name%TYPE;
 co_department_id CONSTANT departments.department_id%TYPE := 10;
 e_good EXCEPTION;
 BEGIN
 SELECT e.last_name
 INTO l_last_name
 FROM employees e
 WHERE e.department_id = co_department_id;
 EXCEPTION
 WHEN no_data_found THEN NULL; -- handle_no_data_found;
 WHEN too_many_rows THEN null; -- handle_too_many_rows;
 END my_proc;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_last_name employees.last_name%TYPE;
 co_department_id CONSTANT departments.department_id%TYPE := 10;
 e_good EXCEPTION;
 BEGIN
 SELECT e.last_name
 INTO l_last_name
 FROM employees e
 WHERE e.department_id = co_department_id;

 RAISE e_good;
 EXCEPTION
 WHEN no_data_found THEN NULL; -- handle_no_data_found;
 WHEN too_many_rows THEN null; -- handle_too_many_rows;
 END my_proc;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 25 of 144

G-1040: Avoid dead code.

Reason

Any part of your code, which is no longer used or cannot be reached, should be eliminated from your programs to simplify
the code.

Example (bad)

Example (good)

Minor

Maintainability



DECLARE
 co_dept_purchasing CONSTANT departments.department_id%TYPE := 30;
BEGIN
 IF 2=3 THEN
 NULL; -- some dead code here
 END IF;

 NULL; -- some enabled code here

 <<my_loop>>
 LOOP
 EXIT my_loop;
 NULL; -- some dead code here
 END LOOP my_loop;

 NULL; -- some other enabled code here

 CASE
 WHEN 1 = 1 AND 'x' = 'y' THEN
 NULL; -- some dead code here
 ELSE
 NULL; -- some further enabled code here
 END CASE;

 <<my_loop2>>
 FOR r_emp IN (SELECT last_name
 FROM employees
 WHERE department_id = co_dept_purchasing
 OR commission_pct IS NOT NULL
 AND 5=6)
 -- "OR commission_pct IS NOT NULL" is dead code
 LOOP
 SYS.dbms_output.put_line(r_emp.last_name);
 END LOOP my_loop2;

 RETURN;
 NULL; -- some dead code here
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 26 of 144

DECLARE
 co_dept_admin CONSTANT dept.deptno%TYPE := 10;
BEGIN
 NULL; -- some enabled code here
 NULL; -- some other enabled code here
 NULL; -- some further enabled code here

 <<my_loop2>>
 FOR r_emp IN (SELECT last_name
 FROM employees
 WHERE department_id = co_dept_admin
 OR commission_pct IS NOT NULL)
 LOOP
 sys.dbms_output.put_line(r_emp.last_name);
 END LOOP my_loop2;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 27 of 144

G-1050: Avoid using literals in your code.

Reason

Literals are often used more than once in your code. Having them defined as a constant reduces typos in your code and
improves the maintainability.

All constants should be collated in just one package used as a library. If these constants should be used in SQL too it is
good practice to write a deterministic package function for every constant.

Example (bad)

Example (good)

Minor

Changeability



DECLARE
 l_job employees.job_id%TYPE;
BEGIN
 SELECT e.job_id
 INTO l_job
 FROM employees e
 WHERE e.manager_id IS NULL;

 IF l_job = 'AD_PRES' THEN
 NULL;
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL; -- handle_no_data_found;
 WHEN TOO_MANY_ROWS THEN
 NULL; -- handle_too_many_rows;
END;
/

CREATE OR REPLACE PACKAGE constants_up IS
 co_president CONSTANT employees.job_id%TYPE := 'AD_PRES';
END constants_up;
/

DECLARE
 l_job employees.job_id%TYPE;
BEGIN
 SELECT e.job_id
 INTO l_job
 FROM employees e
 WHERE e.manager_id IS NULL;

 IF l_job = constants_up.co_president THEN
 NULL;
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL; -- handle_no_data_found;
 WHEN TOO_MANY_ROWS THEN
 NULL; -- handle_too_many_rows;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 28 of 144

G-1060: Avoid storing ROWIDs or UROWIDs in database tables.

Reason

It is an extremely dangerous practice to store ROWIDs in a table, except for some very limited scenarios of runtime
duration. Any manually explicit or system generated implicit table reorganization will reassign the row's ROWID and break
the data consistency.

Instead of using ROWID for later reference to the original row one should use the primary key column(s).

Example (bad)

Example (good)

Major

Reliability



BEGIN
 INSERT INTO employees_log (employee_id
 ,last_name
 ,first_name
 ,rid)
 SELECT employee_id
 ,last_name
 ,first_name
 ,ROWID
 FROM employees;
END;
/

BEGIN
 INSERT INTO employees_log (employee_id
 ,last_name
 ,first_name)
 SELECT employee_id
 ,last_name
 ,first_name
 FROM employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 29 of 144

G-1070: Avoid nesting comment blocks.

Reason

Having an end-of-comment within a block comment will end that block-comment. This does not only influence your code
but is also very hard to read.

Example (bad)

Example (good)

Minor

Maintainability



BEGIN
 /* comment one -- nested comment two */
 NULL;
 -- comment three /* nested comment four */
 NULL;
END;
/

BEGIN
 /* comment one, comment two */
 NULL;
 -- comment three, comment four
 NULL;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 30 of 144

Variables & Types

General

G-2110: Try to use anchored declarations for variables, constants and types.

REASON

Changing the size of the database column last_name in the employees table from VARCHAR2(20) to VARCHAR2(30) will
result in an error within your code whenever a value larger than the hard coded size is read from the table. This can be
avoided using anchored declarations.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_last_name VARCHAR2(20 CHAR);
 co_first_row CONSTANT INTEGER := 1;
 BEGIN
 SELECT e.last_name
 INTO l_last_name
 FROM employees e
 WHERE rownum = co_first_row;
 EXCEPTION
 WHEN no_data_found THEN NULL; -- handle no_data_found
 WHEN too_many_rows THEN NULL; -- handle too_many_rows (impossible)
 END my_proc;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_last_name employees.last_name%TYPE;
 co_first_row CONSTANT INTEGER := 1;
 BEGIN
 SELECT e.last_name
 INTO l_last_name
 FROM employees e
 WHERE rownum = co_first_row;
 EXCEPTION
 WHEN no_data_found THEN NULL; -- handle no_data_found
 WHEN too_many_rows THEN NULL; -- handle too_many_rows (impossible)
 END my_proc;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 31 of 144

G-2120: Try to have a single location to define your types.

REASON

Single point of change when changing the data type. No need to argue where to define types or where to look for existing
definitions.

A single location could be either a type specification package or the database (database-defined types).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 SUBTYPE big_string_type IS VARCHAR2(1000 CHAR);
 l_note big_string_type;
 BEGIN
 l_note := some_function();
 END my_proc;
END my_package;
/

CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE big_string_type IS VARCHAR2(1000 CHAR);
END types_up;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_note types_up.big_string_type;
 BEGIN
 l_note := some_function();
 END my_proc;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 32 of 144

G-2130: Try to use subtypes for constructs used often in your code.

REASON

Single point of change when changing the data type.

Your code will be easier to read as the usage of a variable/constant may be derived from its definition.

EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS

Type Usage

ora_name_type Object corresponding to the ORACLE naming conventions (table, variable, column, package,
etc.).

max_vc2_type String variable with maximal VARCHAR2 size.

array_index_type Best fitting data type for array navigation.

id_type Data type used for all primary key (id) columns.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_note VARCHAR2(1000 CHAR);
 BEGIN
 l_note := some_function();
 END my_proc;
END my_package;
/

CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE big_string_type IS VARCHAR2(1000 CHAR);
END types_up;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_proc IS
 l_note types_up.big_string_type;
 BEGIN
 l_note := some_function();
 END my_proc;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 33 of 144

G-2140: Never initialize variables with NULL.

REASON

Variables are initialized to NULL by default.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 l_note big_string_type := NULL;
BEGIN
 sys.dbms_output.put_line(l_note);
END;
/

DECLARE
 l_note big_string_type;
BEGIN
 sys.dbms_output.put_line(l_note);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 34 of 144

G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.

REASON

The NULL value can cause confusion both from the standpoint of code review and code execution. You must always use
the IS NULL or IS NOT NULL syntax when you need to check if a value is or is not NULL .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Blocker

Portability, Reliability



DECLARE
 l_value INTEGER;
BEGIN
 IF l_value = NULL THEN
 NULL;
 END IF;
END;
/

DECLARE
 l_value INTEGER;
BEGIN
 IF l_value IS NULL THEN
 NULL;
 END IF;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 35 of 144

G-2160: Avoid initializing variables using functions in the declaration section.

REASON

If your initialization fails, you will not be able to handle the error in your exceptions block.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Reliability



DECLARE
 co_department_id CONSTANT INTEGER := 100;
 l_department_name departments.department_name%TYPE :=
 department_api.name_by_id(in_id => co_department_id);
BEGIN
 sys.dbms_output.put_line(l_department_name);
END;
/

DECLARE
 co_department_id CONSTANT INTEGER := 100;
 co_unkown_name CONSTANT departments.department_name%TYPE := 'unknown';
 l_department_name departments.department_name%TYPE;
BEGIN
 <<init>>
 BEGIN
 l_department_name := department_api.name_by_id(in_id => co_department_id);
 EXCEPTION
 WHEN value_error THEN
 l_department_name := co_unkown_name;
 END init;

 sys.dbms_output.put_line(l_department_name);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 36 of 144

G-2170: Never overload variables.

REASON

The readability of your code will be higher when you do not overload variables.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability



BEGIN
 <<main>>
 DECLARE
 co_main CONSTANT user_objects.object_name%TYPE := 'test_main';
 co_sub CONSTANT user_objects.object_name%TYPE := 'test_sub';
 co_sep CONSTANT user_objects.object_name%TYPE := ' - ';
 l_variable user_objects.object_name%TYPE := co_main;
 BEGIN
 <<sub>>
 DECLARE
 l_variable user_objects.object_name%TYPE := co_sub;
 BEGIN
 sys.dbms_output.put_line(l_variable || co_sep || main.l_variable);
 END sub;
 END main;
END;
/

BEGIN
 <<main>>
 DECLARE
 co_main CONSTANT user_objects.object_name%TYPE := 'test_main';
 co_sub CONSTANT user_objects.object_name%TYPE := 'test_sub';
 co_sep CONSTANT user_objects.object_name%TYPE := ' - ';
 l_main_variable user_objects.object_name%TYPE := co_main;
 BEGIN
 <<sub>>
 DECLARE
 l_sub_variable user_objects.object_name%TYPE := co_sub;
 BEGIN
 sys.dbms_output.put_line(l_sub_variable || co_sep || l_main_variable);
 END sub;
 END main;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 37 of 144

G-2180: Never use quoted identifiers.

REASON

Quoted identifiers make your code hard to read and maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability



DECLARE
 "sal+comm" INTEGER;
 "my constant" CONSTANT INTEGER := 1;
 "my exception" EXCEPTION;
BEGIN
 "sal+comm" := "my constant";
EXCEPTION
 WHEN "my exception" THEN
 NULL;
END;
/

DECLARE
 l_sal_comm INTEGER;
 co_my_constant CONSTANT INTEGER := 1;
 e_my_exception EXCEPTION;
BEGIN
 l_sal_comm := co_my_constant;
EXCEPTION
 WHEN e_my_exception THEN
 NULL;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 38 of 144

G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.

REASON

You should ensure that the name you have chosen well defines its purpose and usage. While you can save a few
keystrokes typing very short names, the resulting code is obscure and hard for anyone besides the author to understand.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 i INTEGER;
 c CONSTANT INTEGER := 1;
 e EXCEPTION;
BEGIN
 i := c;
EXCEPTION
 WHEN e THEN
 NULL;
END;
/

DECLARE
 l_sal_comm INTEGER;
 co_my_constant CONSTANT INTEGER := 1;
 e_my_exception EXCEPTION;
BEGIN
 l_sal_comm := co_my_constant;
EXCEPTION
 WHEN e_my_exception THEN
 NULL;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 39 of 144

G-2190: Avoid using ROWID or UROWID.

REASON

Be careful about your use of Oracle-specific data types like ROWID and UROWID . They might offer a slight improvement in
performance over other means of identifying a single row (primary key or unique index value), but that is by no means
guaranteed.

Use of ROWID or UROWID means that your SQL statement will not be portable to other SQL databases. Many developers
are also not familiar with these data types, which can make the code harder to maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability, Reliability



DECLARE
 l_department_name departments.department_name%TYPE;
 l_rowid ROWID;
BEGIN
 UPDATE departments
 SET department_name = l_department_name
 WHERE ROWID = l_rowid;
END;
/

DECLARE
 l_department_name departments.department_name%TYPE;
 l_department_id departments.department_id%TYPE;
BEGIN
 UPDATE departments
 SET department_name = l_department_name
 WHERE department_id = l_department_id;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 40 of 144

Numeric Data Types

G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.

REASON

If you do not specify precision NUMBER is defaulted to 38 or the maximum supported by your system, whichever is less.
You may well need all this precision, but if you know you do not, you should specify whatever matches your needs.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency



CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_small_increase CONSTANT NUMBER := 0.1;

 FUNCTION small_increase RETURN NUMBER IS
 BEGIN
 RETURN co_small_increase;
 END small_increase;
END constants_up;
/

CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_small_increase CONSTANT NUMBER(5,1) := 0.1;

 FUNCTION small_increase RETURN NUMBER IS
 BEGIN
 RETURN co_small_increase;
 END small_increase;
END constants_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 41 of 144

G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.

REASON

PLS_INTEGER having a length of -2,147,483,648 to 2,147,483,647, on a 32bit system.

There are many reasons to use PLS_INTEGER instead of NUMBER :

PLS_INTEGER uses less memory

PLS_INTEGER uses machine arithmetic, which is up to three times faster than library arithmetic, which is used by
NUMBER .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency



CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_big_increase CONSTANT NUMBER(5,0) := 1;

 FUNCTION big_increase RETURN NUMBER IS
 BEGIN
 RETURN co_big_increase;
 END big_increase;
END constants_up;
/

CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_big_increase CONSTANT PLS_INTEGER := 1;

 FUNCTION big_increase RETURN PLS_INTEGER IS
 BEGIN
 RETURN co_big_increase;
 END big_increase;
END constants_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 42 of 144

G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

RESTRICTION

ORACLE 11g or later

REASON

SIMPLE_INTEGER does no checks on numeric overflow, which results in better performance compared to the other
numeric datatypes.

With ORACLE 11g, the new data type SIMPLE_INTEGER has been introduced. It is a sub-type of PLS_INTEGER and covers
the same range. The basic difference is that SIMPLE_INTEGER is always NOT NULL . When the value of the declared
variable is never going to be null then you can declare it as SIMPLE_INTEGER . Another major difference is that you will
never face a numeric overflow using SIMPLE_INTEGER as this data type wraps around without giving any error.
SIMPLE_INTEGER data type gives major performance boost over PLS_INTEGER when code is compiled in NATIVE mode,

because arithmetic operations on SIMPLE_INTEGER type are performed directly at the hardware level.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency



CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_big_increase CONSTANT NUMBER(5,0) := 1;

 FUNCTION big_increase RETURN NUMBER IS
 BEGIN
 RETURN co_big_increase;
 END big_increase;
END constants_up;
/

CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_big_increase CONSTANT SIMPLE_INTEGER := 1;

 FUNCTION big_increase RETURN SIMPLE_INTEGER IS
 BEGIN
 RETURN co_big_increase;
 END big_increase;
END constants_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 43 of 144

Character Data Types

G-2310: Avoid using CHAR data type.

REASON

CHAR is a fixed length data type, which should only be used when appropriate. CHAR columns/variables are always filled
to its specified lengths; this may lead to unwanted side effects and undesired results.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability



CREATE OR REPLACE PACKAGE types_up
IS
 SUBTYPE description_type IS CHAR(200);
END types_up;
/

CREATE OR REPLACE PACKAGE types_up
IS
 SUBTYPE description_type IS VARCHAR2(200 CHAR);
END types_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 44 of 144

G-2320: Avoid using VARCHAR data type.

REASON

Do not use the VARCHAR data type. Use the VARCHAR2 data type instead. Although the VARCHAR data type is currently
synonymous with VARCHAR2 , the VARCHAR data type is scheduled to be redefined as a separate data type used for
variable-length character strings compared with different comparison semantics.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability



CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE description_type IS VARCHAR(200);
END types_up;
/

CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE description_type IS VARCHAR2(200 CHAR);
END types_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 45 of 144

G-2330: Never use zero-length strings to substitute NULL.

REASON

Today zero-length strings and NULL are currently handled identical by ORACLE. There is no guarantee that this will still be
the case in future releases, therefore if you mean NULL use NULL .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability



CREATE OR REPLACE PACKAGE BODY constants_up IS
 co_null_string CONSTANT VARCHAR2(1) := '';

 FUNCTION null_string RETURN VARCHAR2 IS
 BEGIN
 RETURN co_null_string;
 END null_string;
END constants_up;
/

CREATE OR REPLACE PACKAGE BODY constants_up IS

 FUNCTION empty_string RETURN VARCHAR2 IS
 BEGIN
 RETURN NULL;
 END empty_string;
END constants_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 46 of 144

G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

REASON

Changes to the NLS_LENGTH_SEMANTIC will only be picked up by your code after a recompilation.

In a multibyte environment a VARCHAR2(10) definition may not necessarily hold 10 characters, when multibyte characters
a part of the value that should be stored unless the definition was done using the char semantic.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Reliability



CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE description_type IS VARCHAR2(200);
END types_up;
/

CREATE OR REPLACE PACKAGE types_up IS
 SUBTYPE description_type IS VARCHAR2(200 CHAR);
END types_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 47 of 144

Boolean Data Types

G-2410: Try to use boolean data type for values with dual meaning.

REASON

The use of TRUE and FALSE clarifies that this is a boolean value and makes the code easier to read.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 co_newFile CONSTANT PLS_INTEGER := 1000;
 co_oldFile CONSTANT PLS_INTEGER := 500;
 l_bigger PLS_INTEGER;
BEGIN
 IF co_newFile < co_oldFile THEN
 l_bigger := constants_up.co_numeric_true;
 ELSE
 l_bigger := constants_up.co_numeric_false;
 END IF;
END;
/

DECLARE
 co_newFile CONSTANT PLS_INTEGER := 1000;
 co_oldFile CONSTANT PLS_INTEGER := 500;
 l_bigger BOOLEAN;
BEGIN
 IF co_newFile < co_oldFile THEN
 l_bigger := TRUE;
 ELSE
 l_bigger := FALSE;
 END IF;
END;
/

DECLARE
 co_newFile CONSTANT PLS_INTEGER := 1000;
 co_oldFile CONSTANT PLS_INTEGER := 500;
 l_bigger BOOLEAN;
BEGIN
 l_bigger := NVL(co_newFile < co_oldFile,FALSE);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 48 of 144

Large Objects

G-2510: Avoid using the LONG and LONG RAW data types.

REASON

LONG and LONG RAW data types have been deprecated by ORACLE since version 8i - support might be discontinued in
future ORACLE releases.

There are many constraints to LONG datatypes in comparison to the LOB types.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability



CREATE OR REPLACE PACKAGE example_package IS
 g_long LONG;
 g_raw LONG RAW;

 PROCEDURE do_something;
END example_package;
/

CREATE OR REPLACE PACKAGE BODY example_package IS
 PROCEDURE do_something IS
 BEGIN
 NULL;
 END do_something;
END example_package;
/

CREATE OR REPLACE PACKAGE example_package IS
 PROCEDURE do_something;
END example_package;
/

CREATE OR REPLACE PACKAGE BODY example_package IS
 g_long CLOB;
 g_raw BLOB;

 PROCEDURE do_something IS
 BEGIN
 NULL;
 END do_something;
END example_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 49 of 144

DML & SQL

General

G-3110: Always specify the target columns when coding an insert statement.

REASON

Data structures often change. Having the target columns in your insert statements will lead to change-resistant code.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability



INSERT INTO departments
 VALUES (departments_seq.nextval
 ,'Support'
 ,100
 ,10);

INSERT INTO departments (department_id
 ,department_name
 ,manager_id
 ,location_id)
 VALUES (departments_seq.nextval
 ,'Support'
 ,100
 ,10);

PL/SQL & SQL Coding Guidelines Version 3.5 Page 50 of 144

G-3120: Always use table aliases when your SQL statement involves more than one source.

REASON

It is more human readable to use aliases instead of writing columns with no table information.

Especially when using subqueries the omission of table aliases may end in unexpected behavior and result.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Using meaningful aliases improves the readability of your code.

EXAMPLE SUBQUERY (BAD)

If the jobs table has no employee_id column and employees has one this query will not raise an error but return all
rows of the employees table as a subquery is allowed to access columns of all its parent tables - this construct is known
as correlated subquery.

EXAMPLE SUBQUERY (GOOD)

If the jobs table has no employee_id column this query will return an error due to the directive (given by adding the table
alias to the column) to read the employee_id column from the jobs table.

Major

Maintainability



SELECT last_name
 ,first_name
 ,department_name
 FROM employees
 JOIN departments USING (department_id)
 WHERE EXTRACT(MONTH FROM hire_date) = EXTRACT(MONTH FROM SYSDATE);

SELECT e.last_name
 ,e.first_name
 ,d.department_name
 FROM employees e
 JOIN departments d ON (e.department_id = d.department_id)
 WHERE EXTRACT(MONTH FROM e.hire_date) = EXTRACT(MONTH FROM SYSDATE);

SELECT emp.last_name
 ,emp.first_name
 ,dept.department_name
 FROM employees emp
 JOIN departments dept ON (emp.department_id = dept.department_id)
 WHERE EXTRACT(MONTH FROM emp.hire_date) = EXTRACT(MONTH FROM SYSDATE);

SELECT last_name
 ,first_name
 FROM employees
 WHERE employee_id IN (SELECT employee_id
 FROM jobs
 WHERE job_title like '%Manager%');

PL/SQL & SQL Coding Guidelines Version 3.5 Page 51 of 144

SELECT emp.last_name
 ,emp.first_name
 FROM employees emp
 WHERE emp.employee_id IN (SELECT j.employee_id
 FROM jobs j
 WHERE j.job_title like '%Manager%');

PL/SQL & SQL Coding Guidelines Version 3.5 Page 52 of 144

G-3130: Try to use ANSI SQL-92 join syntax.

REASON

ANSI SQL-92 join syntax supports the full outer join. A further advantage of the ANSI SQL-92 join syntax is the separation
of the join condition from the query filters.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability, Portability



SELECT e.employee_id
 ,e.last_name
 ,e.first_name
 ,d.department_name
 FROM employees e
 ,departments d
 WHERE e.department_id = d.department_id
 AND EXTRACT(MONTH FROM e.hire_date) = EXTRACT(MONTH FROM SYSDATE);

SELECT emp.employee_id
 ,emp.last_name
 ,emp.first_name
 ,dept.department_name
 FROM employees emp
 JOIN departments dept ON dept.department_id = emp.department_id
 WHERE EXTRACT(MONTH FROM emp.hire_date) = EXTRACT(MONTH FROM SYSDATE);

PL/SQL & SQL Coding Guidelines Version 3.5 Page 53 of 144

G-3140: Try to use anchored records as targets for your cursors.

REASON

Using cursor-anchored records as targets for your cursors results enables the possibility of changing the structure of the
cursor without regard to the target structure.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability



DECLARE
 CURSOR c_employees IS
 SELECT employee_id, first_name, last_name
 FROM employees;
 l_employee_id employees.employee_id%TYPE;
 l_first_name employees.first_name%TYPE;
 l_last_name employees.last_name%TYPE;
BEGIN
 OPEN c_employees;
 FETCH c_employees INTO l_employee_id, l_first_name, l_last_name;
 <<process_employees>>
 WHILE c_employees%FOUND
 LOOP
 -- do something with the data
 FETCH c_employees INTO l_employee_id, l_first_name, l_last_name;
 END LOOP process_employees;
 CLOSE c_employees;
END;
/

DECLARE
 CURSOR c_employees IS
 SELECT employee_id, first_name, last_name
 FROM employees;
 r_employee c_employees%ROWTYPE;
BEGIN
 OPEN c_employees;
 FETCH c_employees INTO r_employee;
 <<process_employees>>
 WHILE c_employees%FOUND
 LOOP
 -- do something with the data
 FETCH c_employees INTO r_employee;
 END LOOP process_employees;
 CLOSE c_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 54 of 144

G-3150: Try to use identity columns for surrogate keys.

RESTRICTION

ORACLE 12c

REASON

An identity column is a surrogate key by design – there is no reason why we should not take advantage of this natural
implementation when the keys are generated on database level. Using identity column (and therefore assigning
sequences as default values on columns) has a huge performance advantage over a trigger solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

GENERATED ALWAYS AS IDENTITY ensures that the location_id is populated by a sequence. It is not possible to
override the behavior in the application.

However, if you use a framework that produces an INSERT statement including the surrogate key column, and you cannot
change this behavior, then you have to use the GENERATED BY DEFAULT ON NULL AS IDENTITY option. This has the
downside that the application may pass a value, which might lead to an immediate or delayed ORA-00001: unique
constraint violated error.

Minor

Maintainability, Reliability



CREATE TABLE locations (
 location_id NUMBER(10) NOT NULL
 ,location_name VARCHAR2(60 CHAR) NOT NULL
 ,city VARCHAR2(30 CHAR) NOT NULL
 ,CONSTRAINT locations_pk PRIMARY KEY (location_id)
)
/

CREATE SEQUENCE location_seq START WITH 1 CACHE 20
/

CREATE OR REPLACE TRIGGER location_br_i
 BEFORE INSERT ON LOCATIONS
 FOR EACH ROW
BEGIN
 :new.location_id := location_seq.nextval;
END;
/

CREATE TABLE locations (
 location_id NUMBER(10) GENERATED ALWAYS AS IDENTITY
 ,location_name VARCHAR2(60 CHAR) NOT NULL
 ,city VARCHAR2(30 CHAR) NOT NULL
 ,CONSTRAINT locations_pk PRIMARY KEY (location_id))
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 55 of 144

G-3160: Avoid visible virtual columns.

RESTRICTION

ORACLE 12c

REASON

In contrast to visible columns, invisible columns are not part of a record defined using %ROWTYPE construct. This is helpful
as a virtual column may not be programmatically populated. If your virtual column is visible you have to manually define
the record types used in API packages to be able to exclude them from being part of the record definition.

Invisible columns may be accessed by explicitly adding them to the column list in a SELECT statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability



ALTER TABLE employees
 ADD total_salary GENERATED ALWAYS AS (salary + NVL(commission_pct,0) * salary)
/

DECLARE
 r_employee employees%ROWTYPE;
 l_id employees.employee_id%TYPE := 107;
BEGIN
 r_employee := employee_api.employee_by_id(l_id);
 r_employee.salary := r_employee.salary * constants_up.small_increase();

 UPDATE employees
 SET ROW = r_employee
 WHERE employee_id = l_id;
END;
/

Error report -
ORA-54017: UPDATE operation disallowed ON virtual COLUMNS
ORA-06512: at line 9

ALTER TABLE employees
 ADD total_salary INVISIBLE GENERATED ALWAYS AS
 (salary + NVL(commission_pct,0) * salary)
/

DECLARE
 r_employee employees%ROWTYPE;
 co_id CONSTANT employees.employee_id%TYPE := 107;
BEGIN
 r_employee := employee_api.employee_by_id(co_id);
 r_employee.salary := r_employee.salary * constants_up.small_increase();

 UPDATE employees
 SET ROW = r_employee
 WHERE employee_id = co_id;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 56 of 144

G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store
NULL values.

RESTRICTION

ORACLE 12c

REASON

Default values have been nullifiable until ORACLE 12c. Meaning any tool sending null as a value for a column having a
default value bypassed the default value. Starting with ORACLE 12c default definitions may have an ON NULL definition in
addition, which will assign the default value in case of a null value too.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability



CREATE TABLE null_test (
 test_case NUMBER(2) NOT NULL
 ,column_defaulted VARCHAR2(10 CHAR) DEFAULT 'Default')
/
INSERT INTO null_test(test_case, column_defaulted) VALUES (1,'Value');
INSERT INTO null_test(test_case, column_defaulted) VALUES (2,DEFAULT);
INSERT INTO null_test(test_case, column_defaulted) VALUES (3,NULL);

SELECT * FROM null_test;

TEST_CASE COLUMN_DEF
--------- -----------
 1 Value
 2 Default
 3

CREATE TABLE null_test (
 test_case NUMBER(2) NOT NULL
 ,column_defaulted VARCHAR2(10 CHAR) DEFAULT ON NULL 'Default')
/
INSERT INTO null_test(test_case, column_defaulted) VALUES (1,'Value');
INSERT INTO null_test(test_case, column_defaulted) VALUES (2,DEFAULT);
INSERT INTO null_test(test_case, column_defaulted) VALUES (3,NULL);

SELECT * FROM null_test;

 TEST_CASE COLUMN_DEF
---------- ----------
 1 Value
 2 Default
 3 Default

PL/SQL & SQL Coding Guidelines Version 3.5 Page 57 of 144

G-3180: Always specify column names instead of positional references in ORDER BY clauses.

REASON

If you change your select list afterwards the ORDER BY will still work but order your rows differently, when not changing
the positional number. Furthermore, it is not comfortable to the readers of the code, if they have to count the columns in
the SELECT list to know the way the result is ordered.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Reliability



SELECT UPPER(first_name)
 ,last_name
 ,salary
 ,hire_date
 FROM employees
 ORDER BY 4,1,3;

SELECT upper(first_name) AS first_name
 ,last_name
 ,salary
 ,hire_date
 FROM employees
 ORDER BY hire_date
 ,first_name
 ,salary;

PL/SQL & SQL Coding Guidelines Version 3.5 Page 58 of 144

G-3190: Avoid using NATURAL JOIN.

REASON

A natural join joins tables on equally named columns. This may comfortably fit on first sight, but adding logging columns
to a table (changed_by, changed_date) will result in inappropriate join conditions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Reliability



SELECT department_name
 ,last_name
 ,first_name
 FROM employees NATURAL JOIN departments
 ORDER BY department_name
 ,last_name;
DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
…

ALTER TABLE departments ADD modified_at DATE DEFAULT ON NULL SYSDATE;
ALTER TABLE employees ADD modified_at DATE DEFAULT ON NULL SYSDATE;

SELECT department_name
 ,last_name
 ,first_name
 FROM employees NATURAL JOIN departments
 ORDER BY department_name
 ,last_name;

No data found

SELECT d.department_name
 ,e.last_name
 ,e.first_name
 FROM employees e
 JOIN departments d ON (e.department_id = d.department_id)
 ORDER BY d.department_name
 ,e.last_name;

DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
…

PL/SQL & SQL Coding Guidelines Version 3.5 Page 59 of 144

Bulk Operations

G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for
more than 4 times.

REASON

Context switches between PL/SQL and SQL are extremely costly. BULK Operations reduce the number of switches by
passing an array to the SQL engine, which is used to execute the given statements repeatedly.

(Depending on the PLSQL_OPTIMIZE_LEVEL parameter a conversion to BULK COLLECT will be done by the PL/SQL
compiler automatically.)

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency



DECLARE
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase CONSTANT employees.salary%type := 0.1;
 co_department_id CONSTANT departments.department_id%TYPE := 10;
BEGIN
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 FOR i IN 1..t_employee_ids.COUNT()
 LOOP
 UPDATE employees
 SET salary = salary + (salary * co_increase)
 WHERE employee_id = t_employee_ids(i);
 END LOOP process_employees;
END;
/

DECLARE
 t_employee_ids employee_api.t_employee_ids_type;
 co_increase CONSTANT employees.salary%type := 0.1;
 co_department_id CONSTANT departments.department_id%TYPE := 10;
BEGIN
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => co_department_id
);
 <<process_employees>>
 FORALL i IN 1..t_employee_ids.COUNT()
 UPDATE employees
 SET salary = salary + (salary * co_increase)
 WHERE employee_id = t_employee_ids(i);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 60 of 144

Control Structures

CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.

REASON

The readability of your code will be higher when you avoid negative sentences.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 CURSOR c_employees IS
 SELECT last_name
 ,first_name
 FROM employees
 WHERE commission_pct IS NOT NULL;

 r_employee c_employees%ROWTYPE;
BEGIN
 OPEN c_employees;

 <<read_employees>>
 LOOP
 FETCH c_employees INTO r_employee;
 EXIT read_employees WHEN NOT c_employees%FOUND;
 END LOOP read_employees;

 CLOSE c_employees;
END;
/

DECLARE
 CURSOR c_employees IS
 SELECT last_name
 ,first_name
 FROM employees
 WHERE commission_pct IS NOT NULL;

 r_employee c_employees%ROWTYPE;
BEGIN
 OPEN c_employees;

 <<read_employees>>
 LOOP
 FETCH c_employees INTO r_employee;
 EXIT read_employees WHEN c_employees%NOTFOUND;
 END LOOP read_employees;

 CLOSE c_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 61 of 144

G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.

REASON

%NOTFOUND is set to TRUE as soon as less than the number of rows defined by the LIMIT clause has been read.

EXAMPLE (BAD)

The employees table holds 107 rows. The example below will only show 100 rows as the cursor attribute NOTFOUND is set
to true as soon as the number of rows to be fetched defined by the limit clause is not fulfilled anymore.

EXAMPLE (BETTER)

This example will show all 107 rows but execute one fetch too much (12 instead of 11).

Critical

Reliability



DECLARE
 CURSOR c_employees IS
 SELECT *
 FROM employees
 ORDER BY employee_id;

 TYPE t_employees_type IS TABLE OF c_employees%ROWTYPE;
 t_employees t_employees_type;
 co_bulk_size CONSTANT SIMPLE_INTEGER := 10;
BEGIN
 OPEN c_employees;

 <<process_employees>>
 LOOP
 FETCH c_employees BULK COLLECT INTO t_employees LIMIT co_bulk_size;
 EXIT process_employees WHEN c_employees%NOTFOUND;

 <<display_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i).last_name);
 END LOOP display_employees;
 END LOOP process_employees;

 CLOSE c_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 62 of 144

EXAMPLE (GOOD)

This example does the trick (11 fetches only to process all rows)

DECLARE
 CURSOR c_employees IS
 SELECT *
 FROM employees
 ORDER BY employee_id;

 TYPE t_employees_type IS TABLE OF c_employees%ROWTYPE;
 t_employees t_employees_type;
 co_bulk_size CONSTANT SIMPLE_INTEGER := 10;
BEGIN
 OPEN c_employees;

 <<process_employees>>
 LOOP
 FETCH c_employees BULK COLLECT INTO t_employees LIMIT co_bulk_size;
 EXIT process_employees WHEN t_employees.COUNT() = 0;
 <<display_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i).last_name);
 END LOOP display_employees;
 END LOOP process_employees;

 CLOSE c_employees;
END;
/

DECLARE
 CURSOR c_employees IS
 SELECT *
 FROM employees
 ORDER BY employee_id;

 TYPE t_employees_type IS TABLE OF c_employees%ROWTYPE;
 t_employees t_employees_type;
 co_bulk_size CONSTANT SIMPLE_INTEGER := 10;
BEGIN
 OPEN c_employees;

 <<process_employees>>
 LOOP
 FETCH c_employees BULK COLLECT INTO t_employees LIMIT co_bulk_size;
 <<display_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i).last_name);
 END LOOP display_employees;
 EXIT process_employees WHEN t_employees.COUNT() <> co_bulk_size;
 END LOOP process_employees;

 CLOSE c_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 63 of 144

G-4130: Always close locally opened cursors.

REASON

Any cursors left open can consume additional memory space (i.e. SGA) within the database instance, potentially in both
the shared and private SQL pools. Furthermore, failure to explicitly close cursors may also cause the owning session to
exceed its maximum limit of open cursors (as specified by the OPEN_CURSORS database initialization parameter),
potentially resulting in the Oracle error of “ORA-01000: maximum open cursors exceeded”.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Reliability



CREATE OR REPLACE PACKAGE BODY employee_api AS
 FUNCTION department_salary (in_dept_id IN departments.department_id%TYPE)
 RETURN NUMBER IS
 CURSOR c_department_salary(p_dept_id IN departments.department_id%TYPE) IS
 SELECT sum(salary) AS sum_salary
 FROM employees
 WHERE department_id = p_dept_id;
 r_department_salary c_department_salary%rowtype;
 BEGIN
 OPEN c_department_salary(p_dept_id => in_dept_id);
 FETCH c_department_salary INTO r_department_salary;

 RETURN r_department_salary.sum_salary;
 END department_salary;
END employee_api;
/

CREATE OR REPLACE PACKAGE BODY employee_api AS
 FUNCTION department_salary (in_dept_id IN departments.department_id%TYPE)
 RETURN NUMBER IS
 CURSOR c_department_salary(p_dept_id IN departments.department_id%TYPE) IS
 SELECT SUM(salary) AS sum_salary
 FROM employees
 WHERE department_id = p_dept_id;
 r_department_salary c_department_salary%rowtype;
 BEGIN
 OPEN c_department_salary(p_dept_id => in_dept_id);
 FETCH c_department_salary INTO r_department_salary;
 CLOSE c_department_salary;
 RETURN r_department_salary.sum_salary;
 END department_salary;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 64 of 144

G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

REASON

Oracle provides a variety of cursor attributes (like %FOUND and %ROWCOUNT) that can be used to obtain information about
the status of a cursor, either implicit or explicit.

You should avoid inserting any statements between the cursor operation and the use of an attribute against that cursor.
Interposing such a statement can affect the value returned by the attribute, thereby potentially corrupting the logic of your
program.

In the following example, a procedure call is inserted between the DELETE statement and a check for the value of
SQL%ROWCOUNT , which returns the number of rows modified by that last SQL statement executed in the session. If this

procedure includes a COMMIT / ROLLBACK or another implicit cursor the value of SQL%ROWCOUNT is affected.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability



CREATE OR REPLACE PACKAGE BODY employee_api AS
 co_one CONSTANT SIMPLE_INTEGER := 1;

 PROCEDURE process_dept(in_dept_id IN departments.department_id%TYPE) IS
 BEGIN
 NULL;
 END process_dept;

 PROCEDURE remove_employee (in_employee_id IN employees.employee_id%TYPE) IS
 l_dept_id employees.department_id%TYPE;
 BEGIN
 DELETE FROM employees
 WHERE employee_id = in_employee_id
 RETURNING department_id INTO l_dept_id;

 process_dept(in_dept_id => l_dept_id);

 IF SQL%ROWCOUNT > co_one THEN
 -- too many rows deleted.
 ROLLBACK;
 END IF;
 END remove_employee;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 65 of 144

CREATE OR REPLACE PACKAGE BODY employee_api AS
 co_one CONSTANT SIMPLE_INTEGER := 1;

 PROCEDURE process_dept(in_dept_id IN departments.department_id%TYPE) IS
 BEGIN
 NULL;
 END process_dept;

 PROCEDURE remove_employee (in_employee_id IN employees.employee_id%TYPE) IS
 l_dept_id employees.department_id%TYPE;
 l_deleted_emps SIMPLE_INTEGER;
 BEGIN
 DELETE FROM employees
 WHERE employee_id = in_employee_id
 RETURNING department_id INTO l_dept_id;

 l_deleted_emps := SQL%ROWCOUNT;

 process_dept(in_dept_id => l_dept_id);

 IF l_deleted_emps > co_one THEN
 -- too many rows deleted.
 ROLLBACK;
 END IF;
 END remove_employee;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 66 of 144

CASE / IF / DECODE / NVL / NVL2 / COALESCE

G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.

REASON

IF statements containing multiple ELSIF tend to become complex quickly.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Testability



DECLARE
 l_color VARCHAR2(7 CHAR);
BEGIN
 IF l_color = constants_up.co_red THEN
 my_package.do_red();
 ELSIF l_color = constants_up.co_blue THEN
 my_package.do_blue();
 ELSIF l_color = constants_up.co_black THEN
 my_package.do_black();
 END IF;
END;
/

DECLARE
 l_color types_up.color_code_type;
BEGIN
 CASE l_color
 WHEN constants_up.co_red THEN
 my_package.do_red();
 WHEN constants_up.co_blue THEN
 my_package.do_blue();
 WHEN constants_up.co_black THEN
 my_package.do_black();
 ELSE NULL;
 END CASE;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 67 of 144

G-4220: Try to use CASE rather than DECODE.

REASON

DECODE is an ORACLE specific function hard to understand and restricted to SQL only. The “newer” CASE function is
much more common has a better readability and may be used within PL/SQL too.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability, Portability



SELECT DECODE(dummy, 'X', 1
 , 'Y', 2
 , 'Z', 3
 , 0)
 FROM dual;

SELECT CASE dummy
 WHEN 'X' THEN 1
 WHEN 'Y' THEN 2
 WHEN 'Z' THEN 3
 ELSE 0
 END
 FROM dual;

PL/SQL & SQL Coding Guidelines Version 3.5 Page 68 of 144

G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a
SELECT statement.

REASON

The NVL function always evaluates both parameters before deciding which one to use. This can be harmful if parameter 2
is either a function call or a select statement, as it will be executed regardless of whether parameter 1 contains a NULL
value or not.

The COALESCE function does not have this drawback.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Efficiency, Reliability



SELECT NVL(dummy, my_package.expensive_null(value_in => dummy))
 FROM dual;

SELECT COALESCE(dummy, my_package.expensive_null(value_in => dummy))
 FROM dual;

PL/SQL & SQL Coding Guidelines Version 3.5 Page 69 of 144

G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a
SELECT statement.

REASON

The NVL2 function always evaluates all parameters before deciding which one to use. This can be harmful, if parameter 2
or 3 is either a function call or a select statement, as they will be executed regardless of whether parameter 1 contains a
NULL value or not.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Efficiency, Reliability



SELECT NVL2(dummy, my_package.expensive_nn(value_in => dummy),
 my_package.expensive_null(value_in => dummy))
 FROM dual;

SELECT CASE
 WHEN dummy IS NULL THEN
 my_package.expensive_null(value_in => dummy)
 ELSE
 my_package.expensive_nn(value_in => dummy)
 END
FROM dual;

PL/SQL & SQL Coding Guidelines Version 3.5 Page 70 of 144

Flow Control

G-4310: Never use GOTO statements in your code.

REASON

Code containing gotos is hard to format. Indentation should be used to show logical structure, and gotos have an effect
on logical structure. Using indentation to show the logical structure of a goto and its target, however, is difficult or
impossible. (...)

Use of gotos is a matter of religion. My dogma is that in modern languages, you can easily replace nine out of ten gotos
with equivalent sequential constructs. In these simple cases, you should replace gotos out of habit. In the hard cases,
you can still exorcise the goto in nine out of ten cases: You can break the code into smaller routines, use try-finally, use
nested ifs, test and retest a status variable, or restructure a conditional. Eliminating the goto is harder in these cases,
but it’s good mental exercise (...).

-- McConnell, Steve C. (2004). Code Complete. Second Edition. Microsoft Press.

EXAMPLE (BAD)

Major

Maintainability, Testability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE password_check (in_password IN VARCHAR2) IS
 co_digitarray CONSTANT STRING(10 CHAR) := '0123456789';
 co_lower_bound CONSTANT SIMPLE_INTEGER := 1;
 co_errno CONSTANT SIMPLE_INTEGER := -20501;
 co_errmsg CONSTANT STRING(100 CHAR) := 'Password must contain a digit.';
 l_isdigit BOOLEAN := FALSE;
 l_len_pw PLS_INTEGER;
 l_len_array PLS_INTEGER;
 BEGIN
 l_len_pw := LENGTH(in_password);
 l_len_array := LENGTH(co_digitarray);

 <<check_digit>>
 FOR i IN co_lower_bound .. l_len_array
 LOOP
 <<check_pw_char>>
 FOR j IN co_lower_bound .. l_len_pw
 LOOP
 IF SUBSTR(in_password, j, 1) = SUBSTR(co_digitarray, i, 1) THEN
 l_isdigit := TRUE;
 GOTO check_other_things;
 END IF;
 END LOOP check_pw_char;
 END LOOP check_digit;

 <<check_other_things>>
 NULL;

 IF NOT l_isdigit THEN
 raise_application_error(co_errno, co_errmsg);
 END IF;
 END password_check;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 71 of 144

EXAMPLE (BETTER)

EXAMPLE (GOOD)

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE password_check (in_password IN VARCHAR2) IS
 co_digitarray CONSTANT STRING(10 CHAR) := '0123456789';
 co_lower_bound CONSTANT SIMPLE_INTEGER := 1;
 co_errno CONSTANT SIMPLE_INTEGER := -20501;
 co_errmsg CONSTANT STRING(100 CHAR) := 'Password must contain a digit.';
 l_isdigit BOOLEAN := FALSE;
 l_len_pw PLS_INTEGER;
 l_len_array PLS_INTEGER;
 BEGIN
 l_len_pw := LENGTH(in_password);
 l_len_array := LENGTH(co_digitarray);

 <<check_digit>>
 FOR i IN co_lower_bound .. l_len_array
 LOOP
 <<check_pw_char>>
 FOR j IN co_lower_bound .. l_len_pw
 LOOP
 IF SUBSTR(in_password, j, 1) = SUBSTR(co_digitarray, i, 1) THEN
 l_isdigit := TRUE;
 EXIT check_digit; -- early exit condition
 END IF;
 END LOOP check_pw_char;
 END LOOP check_digit;

 <<check_other_things>>
 NULL;

 IF NOT l_isdigit THEN
 raise_application_error(co_errno, co_errmsg);
 END IF;
 END password_check;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE password_check (in_password IN VARCHAR2) IS
 co_digitpattern CONSTANT STRING(10 CHAR) := '\d';
 co_errno CONSTANT SIMPLE_INTEGER := -20501;
 co_errmsg CONSTANT STRING(100 CHAR) := 'Password must contain a digit.';
 BEGIN
 IF NOT REGEXP_LIKE(in_password, co_digitpattern)
 THEN
 raise_application_error(co_errno, co_errmsg);
 END IF;
 END password_check;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 72 of 144

G-4320: Always label your loops.

REASON

It's a good alternative for comments to indicate the start and end of a named loop processing.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 i INTEGER;
 co_min_value CONSTANT SIMPLE_INTEGER := 1;
 co_max_value CONSTANT SIMPLE_INTEGER := 10;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
BEGIN
 i := co_min_value;
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 END LOOP;

 LOOP
 EXIT;
 END LOOP;

 FOR i IN co_min_value..co_max_value
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP;

 FOR r_employee IN (SELECT last_name FROM employees)
 LOOP
 sys.dbms_output.put_line(r_employee.last_name);
 END LOOP;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 73 of 144

DECLARE
 i INTEGER;
 co_min_value CONSTANT SIMPLE_INTEGER := 1;
 co_max_value CONSTANT SIMPLE_INTEGER := 10;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
BEGIN
 i := co_min_value;
 <<while_loop>>
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 END LOOP while_loop;

 <<basic_loop>>
 LOOP
 EXIT basic_loop;
 END LOOP basic_loop;

 <<for_loop>>
 FOR i IN co_min_value..co_max_value
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP for_loop;

 <<process_employees>>
 FOR r_employee IN (SELECT last_name
 FROM employees)
 LOOP
 sys.dbms_output.put_line(r_employee.last_name);
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 74 of 144

G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.

REASON

It is easier for the reader to see, that the complete data set is processed. Using SQL to define the data to be processed is
easier to maintain and typically faster than using conditional processing within the loop.

Since an EXIT statement is similar to a GOTO statement, it should be avoided, whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 CURSOR c_employees IS
 SELECT employee_id, last_name
 FROM employees;
 r_employee c_employees%ROWTYPE;
BEGIN
 OPEN c_employees;

 <<read_employees>>
 LOOP
 FETCH c_employees INTO r_employee;
 EXIT read_employees WHEN c_employees%NOTFOUND;
 sys.dbms_output.put_line(r_employee.last_name);
 END LOOP read_employees;

 CLOSE c_employees;
END;
/

DECLARE
 CURSOR c_employees IS
 SELECT employee_id, last_name
 FROM employees;
BEGIN
 <<read_employees>>
 FOR r_employee IN c_employees
 LOOP
 sys.dbms_output.put_line(r_employee.last_name);
 END LOOP read_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 75 of 144

G-4340: Always use a NUMERIC FOR loop to process a dense array.

REASON

It is easier for the reader to see, that the complete array is processed.

Since an EXIT statement is similar to a GOTO statement, it should be avoided, whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 TYPE t_employee_type IS VARRAY(10) OF employees.employee_id%TYPE;
 t_employees t_employee_type;
 co_himuro CONSTANT INTEGER := 118;
 co_livingston CONSTANT INTEGER := 177;
 co_min_value CONSTANT SIMPLE_INTEGER := 1;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
 i PLS_INTEGER;
BEGIN
 t_employees := t_employee_type(co_himuro, co_livingston);
 i := co_min_value;

 <<process_employees>>
 LOOP
 EXIT process_employees WHEN i > t_employees.COUNT();
 sys.dbms_output.put_line(t_employees(i));
 i := i + co_increment;
 END LOOP process_employees;
END;
/

DECLARE
 TYPE t_employee_type IS VARRAY(10) OF employees.employee_id%TYPE;
 t_employees t_employee_type;
 co_himuro CONSTANT INTEGER := 118;
 co_livingston CONSTANT INTEGER := 177;
BEGIN
 t_employees := t_employee_type(co_himuro, co_livingston);

 <<process_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i));
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 76 of 144

G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.

REASON

Doing so will not raise a VALUE_ERROR if the array you are looping through is empty. If you want to use FIRST()..LAST()
you need to check the array for emptiness beforehand to avoid the raise of VALUE_ERROR .

EXAMPLE (BAD)

EXAMPLE (BETTER)

Raise an unitialized collection error if t_employees is not initialized.

EXAMPLE (GOOD)

Raises neither an error nor checking whether the array is empty. t_employees.COUNT() always returns a NUMBER (unless
the array is not initialized). If the array is empty COUNT() returns 0 and therefore the loop will not be entered.

Major

Reliability



DECLARE
 TYPE t_employee_type IS TABLE OF employees.employee_id%TYPE;
 t_employees t_employee_type := t_employee_type();
BEGIN
 <<process_employees>>
 FOR i IN t_employees.FIRST()..t_employees.LAST()
 LOOP
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 END LOOP process_employees;
END;
/

DECLARE
 TYPE t_employee_type IS TABLE OF employees.employee_id%TYPE;
 t_employees t_employee_type := t_employee_type();
BEGIN
 <<process_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 END LOOP process_employees;
END;
/

DECLARE
 TYPE t_employee_type IS TABLE OF employees.employee_id%TYPE;
 t_employees t_employee_type := t_employee_type();
BEGIN
 IF t_employees IS NOT NULL THEN
 <<process_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i)); -- some processing
 END LOOP process_employees;
 END IF;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 77 of 144

G-4360: Always use a WHILE loop to process a loose array.

REASON

When a loose array is processed using a NUMERIC FOR LOOP we have to check with all iterations whether the element
exist to avoid a NO_DATA_FOUND exception. In addition, the number of iterations is not driven by the number of elements in
the array but by the number of the lowest/highest element. The more gaps we have, the more superfluous iterations will
be done.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency



DECLARE -- raises no_data_found when processing 2nd record
 TYPE t_employee_type IS TABLE OF employees.employee_id%TYPE;
 t_employees t_employee_type;
 co_rogers CONSTANT INTEGER := 134;
 co_matos CONSTANT INTEGER := 143;
 co_mcewen CONSTANT INTEGER := 158;
 co_index_matos CONSTANT INTEGER := 2;
BEGIN
 t_employees := t_employee_type(co_rogers, co_matos, co_mcewen);
 t_employees.DELETE(co_index_matos);

 IF t_employees IS NOT NULL THEN
 <<process_employees>>
 FOR i IN 1..t_employees.COUNT()
 LOOP
 sys.dbms_output.put_line(t_employees(i));
 END LOOP process_employees;
 END IF;
END;
/

DECLARE
 TYPE t_employee_type IS TABLE OF employees.employee_id%TYPE;
 t_employees t_employee_type;
 co_rogers CONSTANT INTEGER := 134;
 co_matos CONSTANT INTEGER := 143;
 co_mcewen CONSTANT INTEGER := 158;
 co_index_matos CONSTANT INTEGER := 2;
 l_index PLS_INTEGER;
BEGIN
 t_employees := t_employee_type(co_rogers, co_matos, co_mcewen);
 t_employees.DELETE(co_index_matos);

 l_index := t_employees.FIRST();

 <<process_employees>>
 WHILE l_index IS NOT NULL
 LOOP
 sys.dbms_output.put_line(t_employees(l_index));
 l_index := t_employees.NEXT(l_index);
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 78 of 144

G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.

REASON

A numeric for loop as well as a while loop and a cursor for loop have defined loop boundaries. If you are not able to exit
your loop using those loop boundaries, then a basic loop is the right loop to choose.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability



DECLARE
 i INTEGER;
 co_min_value CONSTANT SIMPLE_INTEGER := 1;
 co_max_value CONSTANT SIMPLE_INTEGER := 10;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
BEGIN
 i := co_min_value;
 <<while_loop>>
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 EXIT while_loop WHEN i > co_max_value;
 END LOOP while_loop;

 <<basic_loop>>
 LOOP
 EXIT basic_loop;
 END LOOP basic_loop;

 <<for_loop>>
 FOR i IN co_min_value..co_max_value
 LOOP
 NULL;
 EXIT for_loop WHEN i = co_max_value;
 END LOOP for_loop;

 <<process_employees>>
 FOR r_employee IN (SELECT last_name
 FROM employees)
 LOOP
 sys.dbms_output.put_line(r_employee.last_name);
 NULL; -- some processing
 EXIT process_employees;
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 79 of 144

DECLARE
 i INTEGER;
 co_min_value CONSTANT SIMPLE_INTEGER := 1;
 co_max_value CONSTANT SIMPLE_INTEGER := 10;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
BEGIN
 i := co_min_value;
 <<while_loop>>
 WHILE (i <= co_max_value)
 LOOP
 i := i + co_increment;
 END LOOP while_loop;

 <<basic_loop>>
 LOOP
 EXIT basic_loop;
 END LOOP basic_loop;

 <<for_loop>>
 FOR i IN co_min_value..co_max_value
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP for_loop;

 <<process_employees>>
 FOR r_employee IN (SELECT last_name
 FROM employees)
 LOOP
 sys.dbms_output.put_line(r_employee.last_name); -- some processing
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 80 of 144

G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.

REASON

If you need to use an EXIT statement use its full semantic to make the code easier to understand and maintain. There is
simply no need for an additional IF statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 co_first_year CONSTANT PLS_INTEGER := 1900;
BEGIN
 <<process_employees>>
 LOOP
 my_package.some_processing();

 IF EXTRACT(year FROM SYSDATE) > co_first_year THEN
 EXIT process_employees;
 END IF;

 my_package.some_further_processing();
 END LOOP process_employees;
END;
/

DECLARE
 co_first_year CONSTANT PLS_INTEGER := 1900;
BEGIN
 <<process_employees>>
 LOOP
 my_package.some_processing();

 EXIT process_employees WHEN EXTRACT(YEAR FROM SYSDATE) > co_first_year;

 my_package.some_further_processing();
 END LOOP process_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 81 of 144

G-4380 Try to label your EXIT WHEN statements.

REASON

It's a good alternative for comments, especially for nested loops to name the loop to exit.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



DECLARE
 co_init_loop CONSTANT SIMPLE_INTEGER := 0;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
 co_exit_value CONSTANT SIMPLE_INTEGER := 3;
 co_outer_text CONSTANT types_up.short_text_type := 'Outer Loop counter is ';
 co_inner_text CONSTANT types_up.short_text_type := ' Inner Loop counter is ';
 l_outerlp PLS_INTEGER;
 l_innerlp PLS_INTEGER;
BEGIN
 l_outerlp := co_init_loop;
 <<outerloop>>
 LOOP
 l_innerlp := co_init_loop;
 l_outerlp := NVL(l_outerlp,co_init_loop) + co_increment;
 <<innerloop>>
 LOOP
 l_innerlp := NVL(l_innerlp, co_init_loop) + co_increment;
 sys.dbms_output.put_line(co_outer_text || l_outerlp ||
 co_inner_text || l_innerlp);

 EXIT WHEN l_innerlp = co_exit_value;
 END LOOP innerloop;

 EXIT WHEN l_innerlp = co_exit_value;
 END LOOP outerloop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 82 of 144

DECLARE
 co_init_loop CONSTANT SIMPLE_INTEGER := 0;
 co_increment CONSTANT SIMPLE_INTEGER := 1;
 co_exit_value CONSTANT SIMPLE_INTEGER := 3;
 co_outer_text CONSTANT types_up.short_text_type := 'Outer Loop counter is ';
 co_inner_text CONSTANT types_up.short_text_type := ' Inner Loop counter is ';
 l_outerlp PLS_INTEGER;
 l_innerlp PLS_INTEGER;
BEGIN
 l_outerlp := co_init_loop;
 <<outerloop>>
 LOOP
 l_innerlp := co_init_loop;
 l_outerlp := NVL(l_outerlp,co_init_loop) + co_increment;
 <<innerloop>>
 LOOP
 l_innerlp := NVL(l_innerlp, co_init_loop) + co_increment;
 sys.dbms_output.put_line(co_outer_text || l_outerlp ||
 co_inner_text || l_innerlp);

 EXIT outerloop WHEN l_innerlp = co_exit_value;
 END LOOP innerloop;
 END LOOP outerloop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 83 of 144

G-4385: Never use a cursor for loop to check whether a cursor returns data.

REASON

You might process more data than required, which leads to bad performance.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency



DECLARE
 l_employee_found BOOLEAN := FALSE;
 CURSOR c_employees IS
 SELECT employee_id, last_name
 FROM employees;
BEGIN
 <<check_employees>>
 FOR r_employee IN c_employees
 LOOP
 l_employee_found := TRUE;
 END LOOP check_employees;
END;
/

DECLARE
 l_employee_found BOOLEAN := FALSE;
 CURSOR c_employees IS
 SELECT employee_id, last_name
 FROM employees;
 r_employee c_employees%ROWTYPE;
BEGIN
 OPEN c_employees;
 FETCH c_employees INTO r_employee;
 l_employee_found := c_employees%FOUND;
 CLOSE c_employees;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 84 of 144

G-4390: Avoid use of unreferenced FOR loop indexes.

REASON

If the loop index is used for anything but traffic control inside the loop, this is one of the indicators that a numeric FOR
loop is being used incorrectly. The actual body of executable statements completely ignores the loop index. When that is
the case, there is a good chance that you do not need the loop at all.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency



DECLARE
 l_row PLS_INTEGER;
 l_value PLS_INTEGER;
 co_lower_bound CONSTANT SIMPLE_INTEGER := 1;
 co_upper_bound CONSTANT SIMPLE_INTEGER := 5;
 co_row_incr CONSTANT SIMPLE_INTEGER := 1;
 co_value_incr CONSTANT SIMPLE_INTEGER := 10;
 co_delimiter CONSTANT types_up.short_text_type := ' ';
 co_first_value CONSTANT SIMPLE_INTEGER := 100;
BEGIN
 l_row := co_lower_bound;
 l_value := co_first_value;
 <<for_loop>>
 FOR i IN co_lower_bound .. co_upper_bound
 LOOP
 sys.dbms_output.put_line(l_row || co_delimiter || l_value);
 l_row := l_row + co_row_incr;
 l_value := l_value + co_value_incr;
 END LOOP for_loop;
END;
/

DECLARE
 co_lower_bound CONSTANT SIMPLE_INTEGER := 1;
 co_upper_bound CONSTANT SIMPLE_INTEGER := 5;
 co_value_incr CONSTANT SIMPLE_INTEGER := 10;
 co_delimiter CONSTANT types_up.short_text_type := ' ';
 co_first_value CONSTANT SIMPLE_INTEGER := 100;
BEGIN
 <<for_loop>>
 FOR i IN co_lower_bound .. co_upper_bound
 LOOP
 sys.dbms_output.put_line(i || co_delimiter ||
 to_char(co_first_value + i * co_value_incr));
 END LOOP for_loop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 85 of 144

G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

REASON

Your LOOP statement uses a hard-coded value for either its upper or lower bounds. This creates a "weak link" in your
program because it assumes that this value will never change. A better practice is to create a named constant (or
function) and reference this named element instead of the hard-coded value.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability, Maintainability



BEGIN
 <<for_loop>>
 FOR i IN 1..5
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP for_loop;
END;
/

DECLARE
 co_lower_bound CONSTANT SIMPLE_INTEGER := 1;
 co_upper_bound CONSTANT SIMPLE_INTEGER := 5;
BEGIN
 <<for_loop>>
 FOR i IN co_lower_bound..co_upper_bound
 LOOP
 sys.dbms_output.put_line(i);
 END LOOP for_loop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 86 of 144

Exception Handling

G-5010: Try to use a error/logging framework for your application.

Reason

Having a framework to raise/handle/log your errors allows you to easily avoid duplicate application error numbers and
having different error messages for the same type of error.

This kind of framework should include

Logging (different channels like table, mail, file, etc. if needed)

Error Raising

Multilanguage support if needed

Translate ORACLE error messages to a user friendly error text

Error repository

Example (bad)

Example (good)

Critical

Reliability, Reusability, Testability



BEGIN
 sys.dbms_output.put_line('START');
 -- some processing
 sys.dbms_output.put_line('END');
END;
/

DECLARE
 -- see https://github.com/OraOpenSource/Logger
 l_scope logger_logs.scope%type := 'DEMO';
BEGIN
 logger.log('START', l_scope);
 -- some processing
 logger.log('END', l_scope);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 87 of 144

G-5020: Never handle unnamed exceptions using the error number.

Reason

When literals are used for error numbers the reader needs the error message manual to unterstand what is going on.
Commenting the code or using constants is an option, but it is better to use named exceptions instead, because it ensures
a certain level of consistency which makes maintenance easier.

Example (bad)

Example (good)

Critical

Maintainability



DECLARE
 co_no_data_found CONSTANT INTEGER := -1;
BEGIN
 my_package.some_processing(); -- some code which raises an exception
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 my_package.some_further_processing();
 WHEN OTHERS THEN
 IF SQLCODE = co_no_data_found THEN
 NULL;
 END IF;
END;
/

BEGIN
 my_package.some_processing(); -- some code which raises an exception
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 my_package.some_further_processing();
 WHEN NO_DATA_FOUND THEN
 NULL; -- handle no_data_found
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 88 of 144

G-5030: Never assign predefined exception names to user defined exceptions.

Reason

This is error-prone because your local declaration overrides the global declaration. While it is technically possible to use
the same names, it causes confusion for others needing to read and maintain this code. Additionally, you will need to be
very careful to use the prefix STANDARD in front of any reference that needs to use Oracle’s default exception behavior.

Example (bad)

Using the code below, we are not able to handle the no_data_found exception raised by the SELECT statement as we have
overwritten that exception handler. In addition, our exception handler doesn't have an exception number assigned, which
should be raised when the SELECT statement does not find any rows.

Example (good)

Blocker

Reliability, Testability



DECLARE
 l_dummy dual.dummy%TYPE;
 no_data_found EXCEPTION;
 co_rownum CONSTANT SIMPLE_INTEGER := 0;
 co_no_data_found CONSTANT types_up.short_text_type := 'no_data_found';
BEGIN
 SELECT dummy
 INTO l_dummy
 FROM dual
 WHERE ROWNUM = co_rownum;

 IF l_dummy IS NULL THEN
 RAISE no_data_found;
 END IF;
EXCEPTION
 WHEN no_data_found THEN
 sys.dbms_output.put_line(co_no_data_found);
END;
/

Error report -
ORA-01403: no data found
ORA-06512: at line 5
01403. 00000 - "no data found"
*Cause: No data was found from the objects.
*Action: There was no data from the objects which may be due to end of fetch.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 89 of 144

DECLARE
 l_dummy dual.dummy%TYPE;
 empty_value EXCEPTION;
 co_rownum CONSTANT simple_integer := 0;
 co_empty_value CONSTANT types_up.short_text_type := 'empty_value';
 co_no_data_found CONSTANT types_up.short_text_type := 'no_data_found';
BEGIN
 SELECT dummy
 INTO l_dummy
 FROM dual
 WHERE rownum = co_rownum;

 IF l_dummy IS NULL THEN
 RAISE empty_value;
 END IF;
EXCEPTION
 WHEN empty_value THEN
 sys.dbms_output.put_line(co_empty_value);
 WHEN no_data_found THEN
 sys.dbms_output.put_line(co_no_data_found);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 90 of 144

G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific
handlers.

Reason

There is not necessarily anything wrong with using WHEN OTHERS , but it can cause you to "lose" error information unless
your handler code is relatively sophisticated. Generally, you should use WHEN OTHERS to grab any and every error only
after you have thought about your executable section and decided that you are not able to trap any specific exceptions. If
you know, on the other hand, that a certain exception might be raised, include a handler for that error. By declaring two
different exception handlers, the code more clearly states what we expect to have happen and how we want to handle the
errors. That makes it easier to maintain and enhance. We also avoid hard-coding error numbers in checks against
SQLCODE .

Example (bad)

Example (good)

Major

Reliability



BEGIN
 my_package.some_processing();
EXCEPTION
 WHEN OTHERS THEN
 my_package.some_further_processing();
END;
/

BEGIN
 my_package.some_processing();
EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 my_package.some_further_processing();
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 91 of 144

G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded
20nnn error number or hard-coded message.

Reason

If you are not very organized in the way you allocate, define and use the error numbers between 20999 and 20000 (those
reserved by Oracle for its user community), it is very easy to end up with conflicting usages. You should assign these error
numbers to named constants and consolidate all definitions within a single package. When you call
RAISE_APPLICATION_ERROR , you should reference these named elements and error message text stored in a table. Use

your own raise procedure in place of explicit calls to RAISE_APPLICATION_ERROR . If you are raising a "system" exception
like NO_DATA_FOUND , you must use RAISE. However, when you want to raise an application-specific error, you use
RAISE_APPLICATION_ERROR . If you use the latter, you then have to provide an error number and message. This leads to

unnecessary and damaging hard-coded values. A more fail-safe approach is to provide a predefined raise procedure that
automatically checks the error number and determines the correct way to raise the error.

Example (bad)

Example (good)

Major

Changeability, Maintainability



BEGIN
 raise_application_error(-20501,'Invalid employee_id');
END;
/

BEGIN
 err_up.raise(in_error => err.co_invalid_employee_id);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 92 of 144

G-5060: Avoid unhandled exceptions.

Reason

This may be your intention, but you should review the code to confirm this behavior.

If you are raising an error in a program, then you are clearly predicting a situation in which that error will occur. You should
consider including a handler in your code for predictable errors, allowing for a graceful and informative failure. After all, it
is much more difficult for an enclosing block to be aware of the various errors you might raise and more importantly, what
should be done in response to the error.

The form that this failure takes does not necessarily need to be an exception. When writing functions, you may well decide
that in the case of certain exceptions, you will want to return a value such as NULL, rather than allow an exception to
propagate out of the function.

Example (bad)

Example (good)

Major

Reliability



CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION name_by_id (in_id IN departments.department_id%TYPE)
 RETURN departments.department_name%TYPE IS
 l_department_name departments.department_name%TYPE;
 BEGIN
 SELECT department_name
 INTO l_department_name
 FROM departments
 WHERE department_id = in_id;

 RETURN l_department_name;
 END name_by_id;
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION name_by_id (in_id IN departments.department_id%TYPE)
 RETURN departments.department_name%TYPE IS
 l_department_name departments.department_name%TYPE;
 BEGIN
 SELECT department_name
 INTO l_department_name
 FROM departments
 WHERE department_id = in_id;

 RETURN l_department_name;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN NULL;
 WHEN TOO_MANY_ROWS THEN RAISE;
 END name_by_id;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 93 of 144

G-5070: Avoid using Oracle predefined exceptions.

Reason

You have raised an exception whose name was defined by Oracle. While it is possible that you have a good reason for
"using" one of Oracle's predefined exceptions, you should make sure that you would not be better off declaring your own
exception and raising that instead.

If you decide to change the exception you are using, you should apply the same consideration to your own exceptions.
Specifically, do not "re-use" exceptions. You should define a separate exception for each error condition, rather than use
the same exception for different circumstances.

Being as specific as possible with the errors raised will allow developers to check for, and handle, the different kinds of
errors the code might produce.

Example (bad)

Example (good)

Critical

Reliability



BEGIN
 RAISE NO_DATA_FOUND;
END;
/

DECLARE
 my_exception EXCEPTION;
BEGIN
 RAISE my_exception;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 94 of 144

Dynamic SQL

G-6010: Always use a character variable to execute dynamic SQL.

Reason

Having the executed statement in a variable makes it easier to debug your code (e.g. by logging the statement that failed).

Example (bad)

Example (good)

Major

Maintainability, Testability



DECLARE
 l_next_val employees.employee_id%TYPE;
BEGIN
 EXECUTE IMMEDIATE 'select employees_seq.nextval from dual' INTO l_next_val;
END;
/

DECLARE
 l_next_val employees.employee_id%TYPE;
 co_sql CONSTANT types_up.big_string_type :=
 'select employees_seq.nextval from dual';
BEGIN
 EXECUTE IMMEDIATE co_sql INTO l_next_val;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 95 of 144

G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML
statements rather than the USING clause.

Reason

When a dynamic INSERT , UPDATE , or DELETE statement has a RETURNING clause, output bind arguments can go in the
RETURNING INTO clause or in the USING clause.

You should use the RETURNING INTO clause for values returned from a DML operation. Reserve OUT and IN OUT bind
variables for dynamic PL/SQL blocks that return values in PL/SQL variables.

Example (bad)

Example (good)

Minor

Maintainability



CREATE OR REPLACE PACKAGE BODY employee_api IS
 PROCEDURE upd_salary (in_employee_id IN employees.employee_id%TYPE
 ,in_increase_pct IN types_up.percentage
 ,out_new_salary OUT employees.salary%TYPE)
 IS
 co_sql_stmt CONSTANT types_up.big_string_type := '
 UPDATE employees SET salary = salary + (salary / 100 * :1)
 WHERE employee_id = :2
 RETURNING salary INTO :3';
 BEGIN
 EXECUTE IMMEDIATE co_sql_stmt
 USING in_increase_pct, in_employee_id, OUT out_new_salary;
 END upd_salary;
END employee_api;
/

CREATE OR REPLACE PACKAGE BODY employee_api IS
 PROCEDURE upd_salary (in_employee_id IN employees.employee_id%TYPE
 ,in_increase_pct IN types_up.percentage
 ,out_new_salary OUT employees.salary%TYPE)
 IS
 co_sql_stmt CONSTANT types_up.big_string_type :=
 'UPDATE employees SET salary = salary + (salary / 100 * :1)
 WHERE employee_id = :2
 RETURNING salary INTO :3';
 BEGIN
 EXECUTE IMMEDIATE co_sql_stmt
 USING in_increase_pct, in_employee_id
 RETURNING INTO out_new_salary;
 END upd_salary;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 96 of 144

Stored Objects

General

G-7110: Try to use named notation when calling program units.

REASON

Named notation makes sure that changes to the signature of the called program unit do not affect your call.

This is not needed for standard functions like (TO_CHAR , TO_DATE , NVL , ROUND , etc.) but should be followed for any other
stored object having more than one parameter.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Maintainability



DECLARE
 r_employee employees%rowtype;
 co_id CONSTANT employees.employee_id%type := 107;
BEGIN
 employee_api.employee_by_id(r_employee, co_id);
END;
/

DECLARE
 r_employee employees%rowtype;
 co_id CONSTANT employees.employee_id%type := 107;
BEGIN
 employee_api.employee_by_id(out_row => r_employee, in_employee_id => co_id);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 97 of 144

G-7120 Always add the name of the program unit to its end keyword.

REASON

It's a good alternative for comments to indicate the end of program units, especially if they are lengthy or nested.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



CREATE OR REPLACE PACKAGE BODY employee_api IS
 FUNCTION employee_by_id (in_employee_id IN employees.employee_id%TYPE)
 RETURN employees%rowtype IS
 r_employee employees%rowtype;
 BEGIN
 SELECT *
 INTO r_employee
 FROM employees
 WHERE employee_id = in_employee_id;

 RETURN r_employee;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 WHEN TOO_MANY_ROWS THEN
 RAISE;
 END;
END;
/

CREATE OR REPLACE PACKAGE BODY employee_api IS
 FUNCTION employee_by_id (in_employee_id IN employees.employee_id%TYPE)
 RETURN employees%rowtype IS
 r_employee employees%rowtype;
 BEGIN
 SELECT *
 INTO r_employee
 FROM employees
 WHERE employee_id = in_employee_id;

 RETURN r_employee;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 WHEN TOO_MANY_ROWS THEN
 RAISE;
 END employee_by_id;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 98 of 144

G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.

REASON

Local procedures and functions offer an excellent way to avoid code redundancy and make your code more readable (and
thus more maintainable). Your local program refers, however, an external data structure, i.e., a variable that is declared
outside of the local program. Thus, it is acting as a global variable inside the program.

This external dependency is hidden, and may cause problems in the future. You should instead add a parameter to the
parameter list of this program and pass the value through the list. This technique makes your program more reusable and
avoids scoping problems, i.e. the program unit is less tied to particular variables in the program. In addition, unit
encapsulation makes maintenance a lot easier and cheaper.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability, Testability



CREATE OR REPLACE PACKAGE BODY EMPLOYEE_API IS
 PROCEDURE calc_salary (in_employee_id IN employees.employee_id%TYPE) IS
 r_emp employees%rowtype;

 FUNCTION commission RETURN NUMBER IS
 l_commission employees.salary%TYPE := 0;
 BEGIN
 IF r_emp.commission_pct IS NOT NULL
 THEN
 l_commission := r_emp.salary * r_emp.commission_pct;
 END IF;

 RETURN l_commission;
 END commission;
 BEGIN
 SELECT *
 INTO r_emp
 FROM employees
 WHERE employee_id = in_employee_id;

 SYS.DBMS_OUTPUT.PUT_LINE(r_emp.salary + commission());
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 WHEN TOO_MANY_ROWS THEN
 NULL;
 END calc_salary;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 99 of 144

CREATE OR REPLACE PACKAGE BODY EMPLOYEE_API IS
 PROCEDURE calc_salary (in_employee_id IN employees.employee_id%TYPE) IS
 r_emp employees%rowtype;

 FUNCTION commission (in_salary IN employees.salary%TYPE
 ,in_comm_pct IN employees.commission_pct%TYPE)
 RETURN NUMBER IS
 l_commission employees.salary%TYPE := 0;
 BEGIN
 IF in_comm_pct IS NOT NULL THEN
 l_commission := in_salary * in_comm_pct;
 END IF;

 RETURN l_commission;
 END commission;
 BEGIN
 SELECT *
 INTO r_emp
 FROM employees
 WHERE employee_id = in_employee_id;

 SYS.DBMS_OUTPUT.PUT_LINE(
 r_emp.salary + commission(in_salary => r_emp.salary
 ,in_comm_pct => r_emp.commission_pct)
);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 WHEN TOO_MANY_ROWS THEN
 NULL;
 END calc_salary;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 100 of 144

G-7140: Always ensure that locally defined procedures or functions are referenced.

REASON

This can occur as the result of changes to code over time, but you should make sure that this situation does not reflect a
problem. And you should remove the declaration to avoid maintenance errors in the future.

You should go through your programs and remove any part of your code that is no longer used. This is a relatively
straightforward process for variables and named constants. Simply execute searches for a variable's name in that
variable's scope. If you find that the only place it appears is in its declaration, delete the declaration.

There is never a better time to review all the steps you took, and to understand the reasons you took them, then
immediately upon completion of your program. If you wait, you will find it particularly difficult to remember those parts of
the program that were needed at one point, but were rendered unnecessary in the end.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_procedure IS
 FUNCTION my_func RETURN NUMBER IS
 co_true CONSTANT INTEGER := 1;
 BEGIN
 RETURN co_true;
 END my_func;
 BEGIN
 NULL;
 END my_procedure;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_procedure IS
 FUNCTION my_func RETURN NUMBER IS
 co_true CONSTANT INTEGER := 1;
 BEGIN
 RETURN co_true;
 END my_func;
 BEGIN
 sys.dbms_output.put_line(my_func());
 END my_procedure;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 101 of 144

G-7150: Try to remove unused parameters.

REASON

You should go through your programs and remove any partameter that is no longer used.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Maintainability



CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION name_by_id (in_department_id IN departments.department_id%TYPE
 ,in_manager_id IN departments.manager_id%TYPE)
 RETURN departments.department_name%TYPE IS
 l_department_name departments.department_name%TYPE;
 BEGIN
 <<find_department>>
 BEGIN
 SELECT department_name
 INTO l_department_name
 FROM departments
 WHERE department_id = in_department_id;
 EXCEPTION
 WHEN NO_DATA_FOUND OR TOO_MANY_ROWS THEN
 l_department_name := NULL;
 END find_department;

 RETURN l_department_name;
 END name_by_id;
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION name_by_id (in_department_id IN departments.department_id%TYPE)
 RETURN departments.department_name%TYPE IS
 l_department_name departments.department_name%TYPE;
 BEGIN
 <<find_department>>
 BEGIN
 SELECT department_name
 INTO l_department_name
 FROM departments
 WHERE department_id = in_department_id;
 EXCEPTION
 WHEN NO_DATA_FOUND OR TOO_MANY_ROWS THEN
 l_department_name := NULL;
 END find_department;

 RETURN l_department_name;
 END name_by_id;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 102 of 144

Packages

G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.

REASON

The entire package is loaded into memory when the package is called the first time. To optimize memory consumption
and keep load time small packages should be kept small but include components that are used together.

Minor

Efficiency, Maintainability



PL/SQL & SQL Coding Guidelines Version 3.5 Page 103 of 144

G-7220: Always use forward declaration for private functions and procedures.

REASON

Having forward declarations allows you to order the functions and procedures of the package in a reasonable way.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability



CREATE OR REPLACE PACKAGE department_api IS
 PROCEDURE del (in_department_id IN departments.department_id%TYPE);
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION does_exist (in_department_id IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 l_return PLS_INTEGER;
 BEGIN
 <<check_row_exists>>
 BEGIN
 SELECT 1
 INTO l_return
 FROM departments
 WHERE department_id = in_department_id;
 EXCEPTION
 WHEN no_data_found OR too_many_rows THEN
 l_return := 0;
 END check_row_exists;

 RETURN l_return = 1;
 END does_exist;

 PROCEDURE del (in_department_id IN departments.department_id%TYPE) IS
 BEGIN
 IF does_exist(in_department_id) THEN
 NULL;
 END IF;
 END del;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 104 of 144

CREATE OR REPLACE PACKAGE department_api IS
 PROCEDURE del (in_department_id IN departments.department_id%TYPE);
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION does_exist (in_department_id IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE del (in_department_id IN departments.department_id%TYPE) IS
 BEGIN
 IF does_exist(in_department_id) THEN
 NULL;
 END IF;
 END del;

 FUNCTION does_exist (in_department_id IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 l_return PLS_INTEGER;
 BEGIN
 <<check_row_exists>>
 BEGIN
 SELECT 1
 INTO l_return
 FROM departments
 WHERE department_id = in_department_id;
 EXCEPTION
 WHEN no_data_found OR too_many_rows THEN
 l_return := 0;
 END check_row_exists;

 RETURN l_return = 1;
 END does_exist;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 105 of 144

G-7230: Avoid declaring global variables public.

REASON

You should always declare package-level data inside the package body. You can then define "get and set" methods
(functions and procedures, respectively) in the package specification to provide controlled access to that data. By doing
so you can guarantee data integrity, you can change your data structure implementation, and also track access to those
data structures.

Data structures (scalar variables, collections, cursors) declared in the package specification (not within any specific
program) can be referenced directly by any program running in a session with EXECUTE rights to the package.

Instead, declare all package-level data in the package body and provide "get and set" methods - a function to get the value
and a procedure to set the value - in the package specification. Developers then can access the data using these methods
- and will automatically follow all rules you set upon data modification.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability



CREATE OR REPLACE PACKAGE employee_api AS
 co_min_increase CONSTANT types_up.sal_increase_type := 0.01;
 co_max_increase CONSTANT types_up.sal_increase_type := 0.5;
 g_salary_increase types_up.sal_increase_type := co_min_increase;

 PROCEDURE set_salary_increase (in_increase IN types_up.sal_increase_type);
 FUNCTION salary_increase RETURN types_up.sal_increase_type;
END employee_api;
/

CREATE OR REPLACE PACKAGE BODY employee_api AS
 PROCEDURE set_salary_increase (in_increase IN types_up.sal_increase_type) IS
 BEGIN
 g_salary_increase := GREATEST(LEAST(in_increase,co_max_increase)
 ,co_min_increase);
 END set_salary_increase;

 FUNCTION salary_increase RETURN types_up.sal_increase_type IS
 BEGIN
 RETURN g_salary_increase;
 END salary_increase;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 106 of 144

CREATE OR REPLACE PACKAGE employee_api AS
 PROCEDURE set_salary_increase (in_increase IN types_up.sal_increase_type);
 FUNCTION salary_increase RETURN types_up.sal_increase_type;
END employee_api;
/

CREATE OR REPLACE PACKAGE BODY employee_api AS
 g_salary_increase types_up.sal_increase_type(4,2);

 PROCEDURE init;

 PROCEDURE set_salary_increase (in_increase IN types_up.sal_increase_type) IS
 BEGIN
 g_salary_increase := GREATEST(LEAST(in_increase
 ,constants_up.max_salary_increase())
 ,constants_up.min_salary_increase());
 END set_salary_increase;

 FUNCTION salary_increase RETURN types_up.sal_increase_type IS
 BEGIN
 RETURN g_salary_increase;
 END salary_increase;

 PROCEDURE init
 IS
 BEGIN
 g_salary_increase := constants_up.min_salary_increase();
 END init;
BEGIN
 init();
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 107 of 144

G-7240: Avoid using an IN OUT parameter as IN or OUT only.

REASON

By showing the mode of parameters, you help the reader. If you do not specify a parameter mode, the default mode is IN .
Explicitly showing the mode indication of all parameters is a more assertive action than simply taking the default mode.
Anyone reviewing the code later will be more confident that you intended the parameter mode to be IN / OUT .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Maintainability



-- Bad
CREATE OR REPLACE PACKAGE BODY employee_up IS
 PROCEDURE rcv_emp (io_first_name IN OUT employees.first_name%TYPE
 ,io_last_name IN OUT employees.last_name%TYPE
 ,io_email IN OUT employees.email%TYPE
 ,io_phone_number IN OUT employees.phone_number%TYPE
 ,io_hire_date IN OUT employees.hire_date%TYPE
 ,io_job_id IN OUT employees.job_id%TYPE
 ,io_salary IN OUT employees.salary%TYPE
 ,io_commission_pct IN OUT employees.commission_pct%TYPE
 ,io_manager_id IN OUT employees.manager_id%TYPE
 ,io_department_id IN OUT employees.department_id%TYPE
 ,in_wait INTEGER) IS
 l_status PLS_INTEGER;
 co_dflt_pipe_name CONSTANT STRING(30 CHAR) := 'MyPipe';
 co_ok CONSTANT PLS_INTEGER := 1;
 BEGIN
 -- Receive next message and unpack for each column.
 l_status := SYS.dbms_pipe.receive_message(pipename => co_dflt_pipe_name
 ,timeout => in_wait);
 IF l_status = co_ok THEN
 SYS.dbms_pipe.unpack_message (io_first_name);
 SYS.dbms_pipe.unpack_message (io_last_name);
 SYS.dbms_pipe.unpack_message (io_email);
 SYS.dbms_pipe.unpack_message (io_phone_number);
 SYS.dbms_pipe.unpack_message (io_hire_date);
 SYS.dbms_pipe.unpack_message (io_job_id);
 SYS.dbms_pipe.unpack_message (io_salary);
 SYS.dbms_pipe.unpack_message (io_commission_pct);
 SYS.dbms_pipe.unpack_message (io_manager_id);
 SYS.dbms_pipe.unpack_message (io_department_id);
 END IF;
 END rcv_emp;
END employee_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 108 of 144

CREATE OR REPLACE PACKAGE BODY employee_up IS
 PROCEDURE rcv_emp (OUT_first_name OUT employees.first_name%TYPE
 ,OUT_last_name OUT employees.last_name%TYPE
 ,OUT_email OUT employees.email%TYPE
 ,OUT_phone_number OUT employees.phone_number%TYPE
 ,OUT_hire_date OUT employees.hire_date%TYPE
 ,OUT_job_id OUT employees.job_id%TYPE
 ,OUT_salary OUT employees.salary%TYPE
 ,OUT_commission_pct OUT employees.commission_pct%TYPE
 ,OUT_manager_id OUT employees.manager_id%TYPE
 ,OUT_department_id OUT employees.department_id%TYPE
 ,in_wait IN INTEGER) IS
 l_status PLS_INTEGER;
 co_dflt_pipe_name CONSTANT STRING(30 CHAR) := 'MyPipe';
 co_ok CONSTANT PLS_INTEGER := 1;
 BEGIN
 -- Receive next message and unpack for each column.
 l_status := SYS.dbms_pipe.receive_message(pipename => co_dflt_pipe_name
 ,timeout => in_wait);
 IF l_status = co_ok THEN
 SYS.dbms_pipe.unpack_message (out_first_name);
 SYS.dbms_pipe.unpack_message (out_last_name);
 SYS.dbms_pipe.unpack_message (out_email);
 SYS.dbms_pipe.unpack_message (out_phone_number);
 SYS.dbms_pipe.unpack_message (out_hire_date);
 SYS.dbms_pipe.unpack_message (out_job_id);
 SYS.dbms_pipe.unpack_message (out_salary);
 SYS.dbms_pipe.unpack_message (out_commission_pct);
 SYS.dbms_pipe.unpack_message (out_manager_id);
 SYS.dbms_pipe.unpack_message (out_department_id);
 END IF;
 END rcv_emp;
END employee_up;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 109 of 144

Procedures

G-7310: Avoid standalone procedures – put your procedures in packages.

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is major advantage compared to
standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



CREATE OR REPLACE PROCEDURE my_procedure IS
BEGIN
 NULL;
END my_procedure;
/

CREATE OR REPLACE PACKAGE my_package IS
 PROCEDURE my_procedure;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_procedure IS
 BEGIN
 NULL;
 END my_procedure;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 110 of 144

G-7320: Avoid using RETURN statements in a PROCEDURE.

REASON

Use of the RETURN statement is legal within a procedure in PL/SQL, but it is very similar to a GOTO , which means you end
up with poorly structured code that is hard to debug and maintain.

A good general rule to follow as you write your PL/SQL programs is "one way in and one way out". In other words, there
should be just one way to enter or call a program, and there should be one way out, one exit path from a program (or loop)
on successful termination. By following this rule, you end up with code that is much easier to trace, debug, and maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Testability



CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_procedure IS
 l_idx SIMPLE_INTEGER := 1;
 co_modulo CONSTANT SIMPLE_INTEGER := 7;
 BEGIN
 <<mod7_loop>>
 LOOP
 IF MOD(l_idx,co_modulo) = 0 THEN
 RETURN;
 END IF;

 l_idx := l_idx + 1;
 END LOOP mod7_loop;
 END my_procedure;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 PROCEDURE my_procedure IS
 l_idx SIMPLE_INTEGER := 1;
 co_modulo CONSTANT SIMPLE_INTEGER := 7;
 BEGIN
 <<mod7_loop>>
 LOOP
 EXIT mod7_loop WHEN MOD(l_idx,co_modulo) = 0;

 l_idx := l_idx + 1;
 END LOOP mod7_loop;
 END my_procedure;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 111 of 144

Functions

G-7410: Avoid standalone functions – put your functions in packages.

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is major advantage compared to
standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability



CREATE OR REPLACE FUNCTION my_function RETURN VARCHAR2 IS
BEGIN
 RETURN NULL;
END my_function;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function RETURN VARCHAR2 IS
 BEGIN
 RETURN NULL;
 END my_function;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 112 of 144

G-7420: Always make the RETURN statement the last statement of your function.

REASON

The reader expects the RETURN statement to be the last statement of a function.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability



CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function (in_from IN PLS_INTEGER
 , in_to IN PLS_INTEGER) RETURN PLS_INTEGER IS
 l_ret PLS_INTEGER;
 BEGIN
 l_ret := in_from;
 <<for_loop>>
 FOR i IN in_from .. in_to
 LOOP
 l_ret := l_ret + i;
 IF i = in_to THEN
 RETURN l_ret;
 END IF;
 END LOOP for_loop;
 END my_function;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function (in_from IN PLS_INTEGER
 , in_to IN PLS_INTEGER) RETURN PLS_INTEGER IS
 l_ret PLS_INTEGER;
 BEGIN
 l_ret := in_from;
 <<for_loop>>
 FOR i IN in_from .. in_to
 LOOP
 l_ret := l_ret + i;
 END LOOP for_loop;
 RETURN l_ret;
 END my_function;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 113 of 144

G-7430: Try to use no more than one RETURN statement within a function.

REASON

A function should have a single point of entry as well as a single exit-point.

EXAMPLE (BAD)

EXAMPLE (BETTER)

CREATE OR REPLACE PACKAGE BODY my_package IS FUNCTION my_function (in_value IN PLS_INTEGER) RETURN
BOOLEAN IS co_yes CONSTANT PLS_INTEGER := 1; l_ret BOOLEAN; BEGIN IF in_value = co_yes THEN l_ret := TRUE; ELSE
l_ret := FALSE; END IF;

END my_function; END my_package; /

EXAMPLE (GOOD)

Major

Will have a medium/potential impact on the maintenance cost. Maintainability, Testability



CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function (in_value IN PLS_INTEGER) RETURN BOOLEAN IS
 co_yes CONSTANT PLS_INTEGER := 1;
 BEGIN
 IF in_value = co_yes THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
 END my_function;
END my_package;
/

 RETURN l_ret;

CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function (in_value IN PLS_INTEGER) RETURN BOOLEAN IS
 co_yes CONSTANT PLS_INTEGER := 1;
 BEGIN
 RETURN in_value = co_yes;
 END my_function;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 114 of 144

G-7440: Never use OUT parameters to return values from a function.

REASON

A function should return all its data through the RETURN clause. Having an OUT parameter prohibits usage of a function
within SQL statements.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reusability



CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function (out_date OUT DATE) RETURN BOOLEAN IS
 BEGIN
 out_date := SYSDATE;
 RETURN TRUE;
 END my_function;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function RETURN DATE IS
 BEGIN
 RETURN SYSDATE;
 END my_function;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 115 of 144

G-7450: Never return a NULL value from a BOOLEAN function.

REASON

If a boolean function returns null, the caller has do deal with it. This makes the usage cumbersome and more error-prone.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability, Testability



CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function RETURN BOOLEAN IS
 BEGIN
 RETURN NULL;
 END my_function;
END my_package;
/

CREATE OR REPLACE PACKAGE BODY my_package IS
 FUNCTION my_function RETURN BOOLEAN IS
 BEGIN
 RETURN TRUE;
 END my_function;
END my_package;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 116 of 144

G-7460: Try to define your packaged/standalone function deterministic if appropriate.

REASON

A deterministic function (always return same result for identical parameters) which is defined to be deterministic will be
executed once per different parameter within a SQL statement whereas if the function is not defined to be deterministic it
is executed once per result row.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency



CREATE OR REPLACE PACKAGE department_api IS
 FUNCTION name_by_id (in_department_id IN departments.department_id%TYPE)
 RETURN departments.department_name%TYPE;
END department_api;
/

CREATE OR REPLACE PACKAGE department_api IS
 FUNCTION name_by_id (in_department_id IN departments.department_id%TYPE)
 RETURN departments.department_name%TYPE DETERMINISTIC;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 117 of 144

Oracle Supplied Packages

G-7510: Always prefix ORACLE supplied packages with owner schema name.

REASON

The signature of oracle-supplied packages is well known and therefore it is quite easy to provide packages with the same
name as those from oracle doing something completely different without you noticing it.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Security



DECLARE
 co_hello_world CONSTANT STRING(30 CHAR) := 'Hello World';
BEGIN
 dbms_output.put_line(co_hello_world);
END;
/

DECLARE
 co_hello_world CONSTANT STRING(30 CHAR) := 'Hello World';
BEGIN
 sys.dbms_output.put_line(co_hello_world);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 118 of 144

Object Types

There are no object type-specific recommendations to be defined at the time of writing.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 119 of 144

Triggers

G-7710: Avoid cascading triggers.

REASON

Having triggers that act on other tables in a way that causes triggers on that table to fire lead to obscure behavior.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Testability



CREATE OR REPLACE TRIGGER dept_br_u
BEFORE UPDATE ON departments FOR EACH ROW
BEGIN
 INSERT INTO departments_hist (department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 VALUES (:OLD.department_id
 ,:OLD.department_name
 ,:OLD.manager_id
 ,:OLD.location_id
 ,SYSDATE);
END;
/
CREATE OR REPLACE TRIGGER dept_hist_br_i
BEFORE INSERT ON departments_hist FOR EACH ROW
BEGIN
 INSERT INTO departments_log (department_id
 ,department_name
 ,modification_date)
 VALUES (:NEW.department_id
 ,:NEW.department_name
 ,SYSDATE);
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 120 of 144

CREATE OR REPLACE TRIGGER dept_br_u
BEFORE UPDATE ON departments FOR EACH ROW
BEGIN
 INSERT INTO departments_hist (department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 VALUES (:OLD.department_id
 ,:OLD.department_name
 ,:OLD.manager_id
 ,:OLD.location_id
 ,SYSDATE);

 INSERT INTO departments_log (department_id
 ,department_name
 ,modification_date)
 VALUES (:OLD.department_id
 ,:OLD.department_name
 ,SYSDATE);

END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 121 of 144

Sequences

G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

REASON

Since ORACLE 11g it is no longer needed to use a SELECT statement to read a sequence (which would imply a context
switch).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Maintainability



DECLARE
 l_sequence_number employees.emloyee_id%type;
BEGIN
 SELECT employees_seq.NEXTVAL
 INTO l_sequence_number
 FROM DUAL;
END;
/

DECLARE
 l_sequence_number employees.emloyee_id%type;
BEGIN
 l_sequence_number := employees_seq.NEXTVAL;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 122 of 144

Patterns

Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.

REASON

If you do a SELECT count() all rows will be read according to the WHERE clause, even if only the availability of data is of
interest. For this we have a big performance overhead. If we do a SELECT count() ... WHERE ROWNUM = 1 there is also a
overhead as there will be two communications between the PL/SQL and the SQL engine. See the following example for a
better solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency



DECLARE
 l_count PLS_INTEGER;
 co_zero CONSTANT SIMPLE_INTEGER := 0;
 co_salary CONSTANT employees.salary%TYPE := 5000;
BEGIN
 SELECT count(*)
 INTO l_count
 FROM employees
 WHERE salary < co_salary;
 IF l_count > co_zero THEN
 <<emp_loop>>
 FOR r_emp IN (SELECT employee_id
 FROM employees)
 LOOP
 IF r_emp.salary < co_salary THEN
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 END IF;
 END LOOP emp_loop;
 END IF;
END;
/

DECLARE
 co_salary CONSTANT employees.salary%TYPE := 5000;
BEGIN
 <<emp_loop>>
 FOR r_emp IN (SELECT e1.employee_id
 FROM employees e1
 WHERE EXISTS(SELECT e2.salary
 FROM employees e2
 WHERE e2.salary < co_salary))
 LOOP
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 END LOOP emp_loop;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 123 of 144

G-8120: Never check existence of a row to decide whether to create it or not.

REASON

The result of an existence check is a snapshot of the current situation. You never know whether in the time between the
check and the (insert) action someone else has decided to create a row with the values you checked. Therefore, you
should only rely on constraints when it comes to preventioin of duplicate records.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Reliability



CREATE OR REPLACE PACKAGE BODY department_api IS
 PROCEDURE ins (in_r_department IN departments%ROWTYPE) IS
 l_count PLS_INTEGER;
 BEGIN
 SELECT count(*)
 INTO l_count
 FROM departments
 WHERE department_id = in_r_department.department_id;

 IF l_count = 0 THEN
 INSERT INTO departments
 VALUES in_r_department;
 END IF;
 END ins;
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 PROCEDURE ins (in_r_department IN departments%ROWTYPE) IS
 BEGIN
 INSERT INTO departments
 VALUES in_r_department;
 EXCEPTION
 WHEN dup_val_on_index THEN NULL; -- handle exception
 END ins;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 124 of 144

Access objects of foreign application schemas

G-8210: Always use synonyms when accessing objects of another application schema.

REASON

If a connection is needed to a table that is placed in a foreign schema, using synonyms is a good choice. If there are
structural changes to that table (e.g. the table name changes or the table changes into another schema) only the synonym
has to be changed no changes to the package are needed (single point of change). If you only have read access for a table
inside another schema, or there is another reason that does not allow you to change data in this table, you can switch the
synonym to a table in your own schema. This is also good practice for testers working on test systems.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Maintainability



DECLARE
 l_product_name oe.products.product_name%TYPE;
 co_price CONSTANT oe.products@list_price%TYPE := 1000;
BEGIN
 SELECT p.product_name
 INTO l_product_name
 FROM oe.products p
 WHERE list_price > co_price;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL; -- handle_no_data_found;
 WHEN TOO_MANY_ROWS THEN
 NULL; -- handle_too_many_rows;
END;
/

CREATE SYNONYM oe_products FOR oe.products;

DECLARE
 l_product_name oe_products.product_name%TYPE;
 co_price CONSTANT oe_products.list_price%TYPE := 1000;
BEGIN
 SELECT p.product_name
 INTO l_product_name
 FROM oe_products p
 WHERE list_price > co_price;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL; -- handle_no_data_found;
 WHEN TOO_MANY_ROWS THEN
 NULL; -- handle_too_many_rows;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 125 of 144

Validating input parameter size

G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration
section of program unit.

REASON

This technique raises an error (value_error) which may not be handled in the called program unit. This is the right way to
do it, as the error is not within this unit but when calling it, so the caller should handle the error.

EXAMPLE (BAD)

EXAMPLE (GOOD)

FUNCTION CALL

Minor

Maintainability, Reliability, Reusability, Testability



CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION dept_by_name (in_dept_name IN departments.department_name%TYPE)
 RETURN departments%ROWTYPE IS
 l_return departments%rowtype;
 BEGIN
 IF in_dept_name IS NULL
 OR LENGTH(in_dept_name) > 20
 THEN
 RAISE err.e_param_to_large;
 END IF;
 -- get the department by name
 SELECT *
 FROM departments
 WHERE department_name = in_dept_name;

 RETURN l_return;
 END dept_by_name;
END department_api;
/

CREATE OR REPLACE PACKAGE BODY department_api IS
 FUNCTION dept_by_name (in_dept_name IN departments.department_name%TYPE)
 RETURN departments%ROWTYPE IS
 l_dept_name departments.department_name%TYPE NOT NULL := in_dept_name;
 l_return departments%rowtype;
 BEGIN
 -- get the department by name
 SELECT *
 FROM departments
 WHERE department_name = l_dept_name;

 RETURN l_return;
 END dept_by_name;
END department_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 126 of 144

...
 r_deparment := department_api.dept_by_name('Far to long name of a department');
...
EXCEPTION
 WHEN VALUE_ERROR THEN ...

PL/SQL & SQL Coding Guidelines Version 3.5 Page 127 of 144

Ensure single execution at a time of a program unit

G-8410: Always use application locks to ensure a program unit is only running once at a given time.

REASON

This technique allows us to have locks across transactions as well as a proven way to clean up at the end of the session.

The alternative using a table where a “Lock-Row” is stored has the disadvantage that in case of an error a proper cleanup
has to be done to “unlock” the program unit.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Reliability



-- Bad
/* Example */
CREATE OR REPLACE PACKAGE BODY lock_up IS
 -- manage locks in a dedicated table created as follows:
 -- CREATE TABLE app_locks (
 -- lock_name VARCHAR2(128 CHAR) NOT NULL primary key
 --);

 PROCEDURE request_lock (in_lock_name IN VARCHAR2) IS
 BEGIN
 -- raises dup_val_on_index
 INSERT INTO app_locks (lock_name) VALUES (in_lock_name);
 END request_lock;

 PROCEDURE release_lock(in_lock_name IN VARCHAR2) IS
 BEGIN
 DELETE FROM app_locks WHERE lock_name = in_lock_name;
 END release_lock;
END lock_up;
/

/* Call bad example */
DECLARE
 co_lock_name CONSTANT VARCHAR2(30 CHAR) := 'APPLICATION_LOCK';
BEGIN
 lock_up.request_lock(in_lock_name => co_lock_name);
 -- processing
 lock_up.release_lock(in_lock_name => co_lock_name);
EXCEPTION
 WHEN OTHERS THEN
 -- log error
 lock_up.release_lock(in_lock_name => co_lock_name);
 RAISE;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 128 of 144

/* Example */
CREATE OR REPLACE PACKAGE BODY lock_up IS
 FUNCTION request_lock(
 in_lock_name IN VARCHAR2,
 in_release_on_commit IN BOOLEAN := FALSE)
 RETURN VARCHAR2 IS
 l_lock_handle VARCHAR2(128 CHAR);
 BEGIN
 sys.dbms_lock.allocate_unique(
 lockname => in_lock_name,
 lockhandle => l_lock_handle,
 expiration_secs => constants_up.co_one_week
);
 IF sys.dbms_lock.request(
 lockhandle => l_lock_handle,
 lockmode => sys.dbms_lock.x_mode,
 timeout => sys.dbms_lock.maxwait,
 release_on_commit => COALESCE(in_release_on_commit, FALSE)
) > 0
 THEN
 RAISE err.e_lock_request_failed;
 END IF;
 RETURN l_lock_handle;
 END request_lock;

 PROCEDURE release_lock(in_lock_handle IN VARCHAR2) IS
 BEGIN
 IF sys.dbms_lock.release(lockhandle => in_lock_handle) > 0 THEN
 RAISE err.e_lock_request_failed;
 END IF;
 END release_lock;
END lock_up;
/

/* Call good example */
DECLARE
 l_handle VARCHAR2(128 CHAR);
 co_lock_name CONSTANT VARCHAR2(30 CHAR) := 'APPLICATION_LOCK';
BEGIN
 l_handle := lock_up.request_lock(in_lock_name => co_lock_name);
 -- processing
 lock_up.release_lock(in_lock_handle => l_handle);
EXCEPTION
 WHEN OTHERS THEN
 -- log error
 lock_up.release_lock(in_lock_handle => l_handle);
 RAISE;
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 129 of 144

Use dbms_application_info package to follow progress of a process

G-8510: Always use dbms_application_info to track program process transiently.

REASON

This technique allows us to view progress of a process without having to persistently write log data in either a table or a
file. The information is accessible through the V$SESSION view.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Reliability



CREATE OR REPLACE PACKAGE BODY employee_api IS
 PROCEDURE process_emps IS
 BEGIN
 <<employees>>
 FOR emp_rec IN (SELECT employee_id
 FROM employees
 ORDER BY employee_id)
 LOOP
 NULL; -- some processing
 END LOOP employees;
 END process_emps;
END employee_api;
/

CREATE OR REPLACE PACKAGE BODY employee_api IS
 PROCEDURE process_emps IS
 BEGIN
 SYS.DBMS_APPLICATION_INFO.SET_MODULE(module_name => $$PLSQL_UNIT
 ,action_name => 'Init');
 <<employees>>
 FOR emp_rec IN (SELECT employee_id
 FROM employees
 ORDER BY employee_id)
 LOOP
 SYS.DBMS_APPLICATION_INFO.SET_ACTION('Processing ' || emp_rec.employee_id);
 END LOOP employees;
 end process_emps;
END employee_api;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 130 of 144

Complexity Analysis

Using software metrics like complexity analysis will guide you towards maintainable and testable pieces of code by
reducing the complexity and splitting the code into smaller chunks.

Halstead Metrics

Calculation

First, we need to compute the following numbers, given the program:

 = the number of distinct operators

 = the number of distinct operands

 = the total number of operators

 = the total number of operands

From these numbers, five measures can be calculated:

Program length:

Program vocabulary:

Volume:

Difficulty:

Effort:

The difficulty measure
 is related to the difficulty of the program to write or understand, e.g. when doing code review.

The volume measure
 describes the size of the implementation of an algorithm.

McCabe's Cyclomatic Complexity

Description

Cyclomatic complexity (or conditional complexity) is a software metric used to measure the complexity of a program. It
directly measures the number of linearly independent paths through a program's source code.

Cyclomatic complexity is computed using the control flow graph of the program: the nodes of the graph correspond to
indivisible groups of commands of a program, and a directed edge connects two nodes if the second command might be
executed immediately after the first command. Cyclomatic complexity may also be applied to individual functions,
modules, methods or classes within a program.

The cyclomatic complexity of a section of source code is the count of the number of linearly independent paths through

n1

n2

N1

N2

N = N1 + N2

n = n1 + n2

V = N ⋅ log2n

D = ⋅n1

2
N2

n2

E = D ⋅ V

D

V

PL/SQL & SQL Coding Guidelines Version 3.5 Page 131 of 144

the source code. For instance, if the source code contains no decision points, such as IF statements or FOR loops, the
complexity would be 1, since there is only a single path through the code. If the code has a single IF statement containing
a single condition there would be two paths through the code, one path where the IF statement is evaluated as TRUE and
one path where the IF statement is evaluated as FALSE.

Calculation

Mathematically, the cyclomatic complexity of a structured program is defined with reference to a directed graph
containing the basic blocks of the program, with an edge between two basic blocks if control may pass from the first to
the second (the control flow graph of the program). The complexity is then defined as:

where

 = cyclomatic complexity

 = the number of edges of the graph

 = the number of nodes of the graph

 = the number of connected components.

Take, for example, a control flow graph of a simple program. The program begins executing at the red
node, then enters a loop (group of three nodes immediately below the red node). On exiting the loop,
there is a conditional statement (group below the loop), and finally the program exits at the blue node.
For this graph,

,
 and
, so the cyclomatic complexity of the program is

.

For a single program (or subroutine or method), P is always equal to 1. Cyclomatic complexity may, however, be applied to
several such programs or subprograms at the same time (e.g., to all of the methods in a class), and in these cases P will
be equal to the number of programs in question, as each subprogram will appear as a disconnected subset of the graph.

It can be shown that the cyclomatic complexity of any structured program with only one entrance point and one exit point
is equal to the number of decision points (i.e., 'if' statements or conditional loops) contained in that program plus one.

M = E − N + 2P

M

E

N

P

E = 9
N = 8
P = 1

3

BEGIN
 FOR i IN 1..3
 LOOP
 dbms_output.put_line('in loop');
 END LOOP;
 --
 IF 1 = 1
 THEN
 dbms_output.put_line('yes');
 END IF;
 --
 dbms_output.put_line('end');
END;
/

PL/SQL & SQL Coding Guidelines Version 3.5 Page 132 of 144

Cyclomatic complexity may be extended to a program with multiple exit points; in this case it is equal to:

Where

 is the number of decision points in the program, and

 is the number of exit points.

π = s + 2

π

s

PL/SQL & SQL Coding Guidelines Version 3.5 Page 133 of 144

Code Reviews

Code reviews check the results of software engineering. According to IEEE-Norm 729, a review is a more or less planned
and structured analysis and evaluation process. Here we distinguish between code review and architect review.

To perform a code review means that after or during the development one or more reviewer proof-reads the code to find
potential errors, potential areas for simplification, or test cases. A code review is a very good opportunity to save costs by
fixing issues before the testing phase.

What can a code-review be good for?

Code quality

Code clarity and maintainability

Quality of the overall architecture

Quality of the documentation

Quality of the interface specification

For an effective review, the following factors must be considered:

Definition of clear goals.

Choice of a suitable person with constructive critical faculties.

Psychological aspects.

Selection of the right review techniques.

Support of the review process from the management.

Existence of a culture of learning and process optimization.

Requirements for the reviewer:

He must not be the owner of the code.

Code reviews may be unpleasant for the developer, as he could fear that his code will be criticized. If the critic is not
considerate, the code writer will build up rejection and resistance against code reviews.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 134 of 144

Tool Support

Development

Trivadis offers a cost-free extension to ORACLE SQL Developer to test compliance with this coding guideline. The
extension may be parameterized to your preferred set of rules and allows checking this set against a program unit.

Setting the preferences

There is an include list as well as an exclude list to define which rules to be checked or ignored.

Activate PLSQL Cop using context menu

PL/SQL & SQL Coding Guidelines Version 3.5 Page 135 of 144

The result of the ckecking process is a list of violations with direct links to the place in the code as well as software
metrics like:

Cyclomatic complexity

Halstead volume

Maintainability Index

Number of lines of code

Number of comment lines

Issue Overview

This statistics are gathered for each program unit in the reviewed code.

Software metrics

PL/SQL & SQL Coding Guidelines Version 3.5 Page 136 of 144

PL/SQL & SQL Coding Guidelines Version 3.5 Page 137 of 144

Appendix

A - PL/SQL & SQL Coding Guidelines as PDF

These guidelines are primarily produced in HTML using Material for MkDocs.

However, we provide these guidelines also as PDF produced by wkhtmltopdf.

The formatting is not perfect, but it should be adequate for those who want to work with offline documents.

B - Mapping new guidelines to prior versions

Old Id New Id Text Severity Change-
ability

Efficiency Maintain-
ability

Portability

1 1010 Try to label your sub blocks. Minor X

2 1020 Always have a matching loop
or block label.

Minor X

3 1030 Avoid defining variables that
are not used.

Minor X X

4 1040 Avoid dead code. Minor X

5 1050 Avoid using literals in your
code.

Minor X

6 1060 Avoid storing ROWIDs or
UROWIDs in database tables.

Major

7 1070 Avoid nesting comment
blocks.

Minor X

8 2110 Try to use anchored
declarations for variables,
constants and types.

Major X

9 2120 Try to have a single location
to define your types.

Minor X

10 2130 Try to use subtypes for
constructs used often in your
code.

Minor X

PL/SQL & SQL Coding Guidelines Version 3.5 Page 138 of 144

https://trivadis.github.io/plsql-and-sql-coding-guidelines/
https://squidfunk.github.io/mkdocs-material/
https://wkhtmltopdf.org/

code.

11 2140 Never initialize variables with
NULL.

Minor X

12 2150 Avoid comparisons with
NULL value, consider using
IS [NOT] NULL.

Blocker X

13 2160 Avoid initializing variables
using functions in the
declaration section.

Critical

14 2170 Never overload variables. Major

15 2180 Never use quoted identifiers. Major X

16 2185 Avoid using overly short
names for explicitly or
implicitly declared identifiers.

Minor X

17 2190 Avoid the use of ROWID or
UROWID.

Major X

18 2210 Avoid declaring NUMBER
variables or subtypes with no
precision.

Minor X

19 2220 Try to use PLS_INTEGER
instead of NUMBER for
arithmetic operations with
integer values.

Minor X

n/a 2230 Try to use SIMPLE_INTEGER
datatype when appropriate.

Minor X

20 2310 Avoid using CHAR data type. Major

21 2320 Avoid using VARCHAR data
type.

Major X

22 2330 Never use zero-length strings
to substitute NULL.

Major X

23 2340 Always define your
VARCHAR2 variables using
CHAR SEMANTIC (if not
defined anchored).

Minor

24 2410 Try to use boolean data type
for values with dual meaning.

Minor X

25 2510 Avoid using the LONG and
LONG RAW data types.

Major X

26 3110 Always specify the target
columns when coding an
insert statement.

Major X

PL/SQL & SQL Coding Guidelines Version 3.5 Page 139 of 144

27 3120 Always use table aliases
when your SQL statement
involves more than one
source.

Major X

28 3130 Try to use ANSI SQL-92 join
syntax.

Minor X X

29 3140 Try to use anchored records
as targets for your cursors.

Major X

n/a 3150 Try to use identity columns
for surrogate keys.

Minor X

n/a 3160 Avoid virtual columns to be
visible.

Major X

n/a 3170 Always use DEFAULT ON
NULL declarations to assign
default values to table
columns if you refuse to
store NULL values.

Major

n/a 3180 Always specify column
names instead of positional
references in ORDER BY
clauses.

Major X

n/a 3190 Avoid using NATURAL JOIN. Major X

30 3210 Always use BULK
OPERATIONS (BULK
COLLECT, FORALL)
whenever you have to
execute a DML statement
more than 4 times.

Major X

31 4110 Always use %NOTFOUND
instead of NOT %FOUND to
check whether a cursor
returned data.

Minor X

32 4120 Avoid using %NOTFOUND
directly after the FETCH
when working with BULK
OPERATIONS and LIMIT
clause.

Critical

33 4130 Always close locally opened
cursors.

Major X

34 4140 Avoid executing any
statements between a SQL
operation and the usage of
an implicit cursor attribute.

Major

35 4210 Try to use CASE rather than
an IF statement with multiple
ELSIF paths.

Major X

PL/SQL & SQL Coding Guidelines Version 3.5 Page 140 of 144

36 4220 Try to use CASE rather than
DECODE.

Minor X X

37 4230 Always use COALESCE
instead of NVL, if parameter
2 of the NVL function is a
function call or a SELECT
statement.

Critical X

38 4240 Always use CASE instead of
NVL2 if parameter 2 or 3 of
NVL2 is either a function call
or a SELECT statement.

Critical X

39 4310 Never use GOTO statements
in your code.

Major X

40 4320 Always label your loops. Minor X

41 4330 Always use a CURSOR FOR
loop to process the complete
cursor results unless you are
using bulk operations.

Minor X

42 4340 Always use a NUMERIC FOR
loop to process a dense
array.

Minor X

43 4350 Always use 1 as lower and
COUNT() as upper bound
when looping through a
dense array.

Major

44 4360 Always use a WHILE loop to
process a loose array.

Minor X

45 4370 Avoid using EXIT to stop
loop processing unless you
are in a basic loop.

Major X

46 4375 Always use EXIT WHEN
instead of an IF statement to
exit from a loop.

Minor X

47 4380 Try to label your EXIT WHEN
statements.

Minor X

48 4385 Never use a cursor for loop
to check whether a cursor
returns data.

Major X

49 4390 Avoid use of unreferenced
FOR loop indexes.

Major X

50 4395 Avoid hard-coded upper or
lower bound values with FOR
loops.

Minor X X

n/a 5010 Try to use a error/logging Critical

PL/SQL & SQL Coding Guidelines Version 3.5 Page 141 of 144

n/a 5010 Try to use a error/logging
framework for your
application.

Critical

51 5020 Never handle unnamed
exceptions using the error
number.

Critical X

52 5030 Never assign predefined
exception names to user
defined exceptions.

Blocker

53 5040 Avoid use of WHEN OTHERS
clause in an exception
section without any other
specific handlers.

Major

54 n/a Avoid use of
EXCEPTION_INIT pragma for
a 20nnn error.

Major

55 5050 Avoid use of the
RAISE_APPLICATION_ERROR
built-in procedure with a
hard-coded 20nnn error
number or hard-coded
message.

Major X X

56 5060 Avoid unhandled exceptions Major

57 5070 Avoid using Oracle
predefined exceptions

Critical

58 6010 Always use a character
variable to execute dynamic
SQL.

Major X

59 6020 Try to use output bind
arguments in the
RETURNING INTO clause of
dynamic DML statements
rather than the USING clause.

Minor X

60 7110 Try to use named notation
when calling program units.

Major X X

61 7120 Always add the name of the
program unit to its end
keyword.

Minor X

62 7130 Always use parameters or
pull in definitions rather than
referencing external variables
in a local program unit.

Major X

63 7140 Always ensure that locally
defined procedures or
functions are referenced.

Major X

64 7150 Try to remove unused Minor X X

PL/SQL & SQL Coding Guidelines Version 3.5 Page 142 of 144

parameters.

65 7210 Try to keep your packages
small. Include only few
procedures and functions
that are used in the same
context.

Minor X X

66 7220 Always use forward
declaration for private
functions and procedures.

Minor X

67 7230 Avoid declaring global
variables public.

Major

68 7240 Avoid using an IN OUT
parameter as IN or OUT only.

Major X X

69 7310 Avoid standalone procedures
– put your procedures in
packages.

Minor X

70 7320 Avoid using RETURN
statements in a PROCEDURE.

Major X

71 7410 Avoid standalone functions –
put your functions in
packages.

Minor X

73 7420 Always make the RETURN
statement the last statement
of your function.

Major X

72 7430 Try to use no more than one
RETURN statement within a
function.

Major X

74 7440 Never use OUT parameters
to return values from a
function.

Major

75 7450 Never return a NULL value
from a BOOLEAN function.

Major

n/a 7460 Try to define your
packaged/standalone
function to be deterministic
if appropriate.

Major X

76 7510 Always prefix ORACLE
supplied packages with
owner schema name.

Major

77 7710 Avoid cascading triggers. Major X

n/a 7810 Do not use SQL inside
PL/SQL to read sequence
numbers (or SYSDATE)

Major X X

78 8110 Never use SELECT COUNT(*) Major X

PL/SQL & SQL Coding Guidelines Version 3.5 Page 143 of 144

78 8110 Never use SELECT COUNT(*)
if you are only interested in
the existence of a row.

Major X

n/a 8120 Never check existence of a
row to decide whether to
create it or not.

Major X

79 8210 Always use synonyms when
accessing objects of another
application schema.

Major X X

n/a 8310 Always validate input
parameter size by assigning
the parameter to a size
limited variable in the
declaration section of
program unit.

Minor X

n/a 8410 Always use application locks
to ensure a program unit only
running once at a given time.

Minor X

n/a 8510 Always use
dbms_application_info to
track program process
transiently

Minor X

1. We see a table and a view as a collection. A jar containing beans is labeled "beans". In Java we call such a collection also "beans" (List<Bean>
beans) and name an entry "bean" (for (Bean bean : beans) {...}). An entry of a table is a row (singular) and a table can contain an unbounded
number of rows (plural). This and the fact that the Oracle database uses the same concept for their tables and views lead to the decision to use the
plural to name a table or a view.

2. Tabs are not used because the indentation depends on the editor configuration. We want to ensure that the code looks the same, indepenent of the
editor used. Hence, no tabs. But why not use 8 spaces? That's the traditional value for a tab. When writing a package function the code in the body
has an indentation of 3. That's 24 characters as a starting point for the code. We think it's too much. Especially if we try to keep a line below 100 or
80 characters. Other good options would be 2 or 4 spaces. We settled for 3 spaces as a compromise. The indentation is still good visible, but does
not use to much space.

PL/SQL & SQL Coding Guidelines Version 3.5 Page 144 of 144

	Table of Contents
	About
	Foreword
	License
	Trademarks
	Disclaimer

	Revision History

	Introduction
	Scope
	Document Conventions
	SQALE characteristics and subcharacteristics
	Severity of the rule
	Keywords used
	Why are standards important
	We have other standards
	We do not agree with all your standards

	Naming Conventions
	General Guidelines
	Naming Conventions for PL/SQL
	Database Object Naming Conventions
	Collection Type
	Column
	Check Constraint
	DML / Instead of Trigger
	Foreign Key Constraint
	Function
	Index
	Object Type
	Package
	Primary Key Constraint
	Procedure
	Sequence
	Synonym
	System Trigger
	Table
	Temporary Table (Global Temporary Table)
	Unique Key Constraint
	View

	Coding Style
	Formatting
	Rules
	Example

	Code Commenting
	Conventions
	Commenting Tags
	Example

	Language Usage
	General
	G-1010: Try to label your sub blocks.
	Reason
	Example (bad)
	Example (good)

	G-1020: Always have a matching loop or block label.
	Reason
	Example (bad)
	Example (good)

	G-1030: Avoid defining variables that are not used.
	Reason
	Example (bad)
	Example (good)

	G-1040: Avoid dead code.
	Reason
	Example (bad)
	Example (good)

	G-1050: Avoid using literals in your code.
	Reason
	Example (bad)
	Example (good)

	G-1060: Avoid storing ROWIDs or UROWIDs in database tables.
	Reason
	Example (bad)
	Example (good)

	G-1070: Avoid nesting comment blocks.
	Reason
	Example (bad)
	Example (good)

	Variables & Types
	General
	G-2110: Try to use anchored declarations for variables, constants and types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2120: Try to have a single location to define your types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2130: Try to use subtypes for constructs used often in your code.
	REASON
	EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2140: Never initialize variables with NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2150: Avoid comparisons with NULL value, consider using IS [NOT] NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2160: Avoid initializing variables using functions in the declaration section.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2170: Never overload variables.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2180: Never use quoted identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2190: Avoid using ROWID or UROWID.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Numeric Data Types
	G-2210: Avoid declaring NUMBER variables, constants or subtypes with no precision.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Character Data Types
	G-2310: Avoid using CHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2320: Avoid using VARCHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2330: Never use zero-length strings to substitute NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Boolean Data Types
	G-2410: Try to use boolean data type for values with dual meaning.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	Large Objects
	G-2510: Avoid using the LONG and LONG RAW data types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	DML & SQL
	General
	G-3110: Always specify the target columns when coding an insert statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3120: Always use table aliases when your SQL statement involves more than one source.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)
	EXAMPLE SUBQUERY (BAD)
	EXAMPLE SUBQUERY (GOOD)

	G-3130: Try to use ANSI SQL-92 join syntax.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3140: Try to use anchored records as targets for your cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3150: Try to use identity columns for surrogate keys.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3160: Avoid visible virtual columns.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3180: Always specify column names instead of positional references in ORDER BY clauses.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3190: Avoid using NATURAL JOIN.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Bulk Operations
	G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Control Structures
	CURSOR
	G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4130: Always close locally opened cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	CASE / IF / DECODE / NVL / NVL2 / COALESCE
	G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4220: Try to use CASE rather than DECODE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Flow Control
	G-4310: Never use GOTO statements in your code.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4320: Always label your loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4340: Always use a NUMERIC FOR loop to process a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4360: Always use a WHILE loop to process a loose array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4380 Try to label your EXIT WHEN statements.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4385: Never use a cursor for loop to check whether a cursor returns data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4390: Avoid use of unreferenced FOR loop indexes.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4395: Avoid hard-coded upper or lower bound values with FOR loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Exception Handling
	G-5010: Try to use a error/logging framework for your application.
	Reason
	Example (bad)
	Example (good)

	G-5020: Never handle unnamed exceptions using the error number.
	Reason
	Example (bad)
	Example (good)

	G-5030: Never assign predefined exception names to user defined exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.
	Reason
	Example (bad)
	Example (good)

	G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
	Reason
	Example (bad)
	Example (good)

	G-5060: Avoid unhandled exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5070: Avoid using Oracle predefined exceptions.
	Reason
	Example (bad)
	Example (good)

	Dynamic SQL
	G-6010: Always use a character variable to execute dynamic SQL.
	Reason
	Example (bad)
	Example (good)

	G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.
	Reason
	Example (bad)
	Example (good)

	Stored Objects
	General
	G-7110: Try to use named notation when calling program units.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7120 Always add the name of the program unit to its end keyword.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7140: Always ensure that locally defined procedures or functions are referenced.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7150: Try to remove unused parameters.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Packages
	G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
	REASON

	G-7220: Always use forward declaration for private functions and procedures.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7230: Avoid declaring global variables public.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7240: Avoid using an IN OUT parameter as IN or OUT only.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Procedures
	G-7310: Avoid standalone procedures – put your procedures in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7320: Avoid using RETURN statements in a PROCEDURE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Functions
	G-7410: Avoid standalone functions – put your functions in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7420: Always make the RETURN statement the last statement of your function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7430: Try to use no more than one RETURN statement within a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-7440: Never use OUT parameters to return values from a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7450: Never return a NULL value from a BOOLEAN function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7460: Try to define your packaged/standalone function deterministic if appropriate.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Oracle Supplied Packages
	G-7510: Always prefix ORACLE supplied packages with owner schema name.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Object Types
	Triggers
	G-7710: Avoid cascading triggers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Sequences
	G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Patterns
	Checking the Number of Rows
	G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-8120: Never check existence of a row to decide whether to create it or not.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Access objects of foreign application schemas
	G-8210: Always use synonyms when accessing objects of another application schema.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Validating input parameter size
	G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)
	FUNCTION CALL

	Ensure single execution at a time of a program unit
	G-8410: Always use application locks to ensure a program unit is only running once at a given time.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Use dbms_application_info package to follow progress of a process
	G-8510: Always use dbms_application_info to track program process transiently.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Complexity Analysis
	Halstead Metrics
	Calculation

	McCabe's Cyclomatic Complexity
	Description
	Calculation

	Code Reviews
	Tool Support
	Development
	Setting the preferences
	Activate PLSQL Cop using context menu
	Software metrics

	Appendix
	A - PL/SQL & SQL Coding Guidelines as PDF
	B - Mapping new guidelines to prior versions

